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Abstract

Recent literature emphasizes the importance of accounting for local unobserved effects, which may stem
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develop a Hausman-like testing strategy to detect the presence of correlated local unobserved effects.
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1. Introduction

Neighboring units may share similar behaviors and characteristics, which, in turn, might confound

the impact assessment of an explanatory variable, say some nonrandomized treatment, on the outcome

of interest. This is especially true when the researcher does not observe these factors. For instance,

better schools tend to be located in better neighborhoods, which complicates the estimation of the causal

effect of school quality on house prices. If the researcher cannot adequately control for neighborhood

characteristics, then the impact of school quality may be overestimated (Black, 1999).

A popular solution to deal with these issues is collecting geo-coded data and pairing units according

to their geographical proximity. If neighborhood unobservables are “sufficiently smooth” over space,

then a “spatial differencing” approach can be used to rule them out. This strategy was pioneered by

Holmes (1998) in models with additively-separable unobserved effects.1 However, despite its popularity,

existing literature neither provides criteria to select the threshold distance for pairing units nor rigorously

investigates the properties of the differencing estimator. Furthermore, proximity is not only geographical

and can be defined along many other dimensions, e.g., economic, social, cognitive, institutional, cultural,

and technological.

This paper fills this gap by developing a class of estimators indexed by a general proximity threshold,

allowing the researcher to select the neighborhood. Gaining insights from the literature on linear panel

data model estimation, we consider two data transformations for models with additively-separable unob-

served heterogeneity: the neighborhood-difference (ND) and the within-neighborhood (NW) transforma-

tions. We draw inspiration from the inferential framework for dyadic data proposed by Tabord-Meehan

(2019) to model the dependence between observations induced by the considered transformations. In par-

ticular, we model the dependence across overlapping neighborhoods using a dependency graph. Thanks

to this dependence structure, we derive sufficient conditions to apply the central limit theorem (CLT) of

Janson et al. (1988).2 In the spirit of Bartolucci et al. (2015), we develop a Hausman-like testing strategy

allowing to detect correlated local unobserved effects and, if the data support their presence, to select the

best neighborhood specification to transform the data.

Our estimation framework is related to, but different from, the pairwise differencing strategies in

Auerbach (2022) and Druckenmiller and Hsiang (2018). Auerbach (2022) proposes a partially linear

model for network data in which the linking behavior is driven by an unknown function of social un-

observables. The author considers a nonparametric pairwise differencing estimator that removes the

unobserved heterogeneity for units with similar linking behavior. Differently from Auerbach (2022), we

impose a higher level condition, i.e., the existence of a neighborhood specification allowing to elimi-

nate the unit-specific neighborhood unobserved heterogeneity (NUH), which enters the model linearly

and additively. However, we do not assume any specific neighborhood formation model. Our framework

1Applications of this strategy are many and include studies on the effects of school quality on house prices (Black, 1999, Fack
and Grenet, 2010, Gibbons et al., 2013, Harjunen et al., 2018), the effect of local taxes on firm performance (Belotti et al.,
2021, Duranton et al., 2011), the effects of tax policies on county level outcomes (Chirinko and Wilson, 2008), the evaluation
of placed-based policy (Einiö and Overman, 2020) and the effect of pollution havens on mortality (Kahn, 2004).

2For inference in the case of non-overlapping neighborhoods see Hansen and Lee (2019).
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nests Druckenmiller and Hsiang (2018) who study identification and estimation of spatial first differences

regression models where the spatial difference transformation is only applied to first-order contiguous

neighbors.

We illustrate the usefulness of our approach using data from the seminal work by Miguel and Kremer

(2004), which investigates the effect of a deworming medical treatment on school absenteeism and health

status in Kenya. The authors exploit a specific type of field experiment, where the randomization occurs

at the school level, to disentangle the direct average treatment effect from the indirect cross-school ex-

ternalities, i.e., the impact of deworming for students in schools near the treated ones. By exploiting the

neighborhood specification suggested by our test, we show how to retrieve the same direct causal effect

in Miguel and Kremer (2004) treating cross-school externalities as NUH. This is especially important

when a clustered experimental design cannot be implemented, for example, due to budget constraints.

The article is organized as follows. Section 2 introduces our statistical model and presents different

interpretations. Section 3 describes the proposed estimators and studies their asymptotic properties. Sec-

tion 4 presents a Hausman-like test to detect the presence of smooth NUH. This is especially important

when a clustered experimental setting cannot be implemented, for example, due to budget constraints

Section 5 investigates the finite sample properties of the proposed estimators and test statistic using

Monte Carlo simulations. In Section 6, we illustrate the proposed methodology exploiting data from a

clustered randomized medical treatment program. Section 7 concludes.

2. The statistical model and interpretations

We consider a random sample {yi,xi, θi}ni=1 drawn from a large population. The baseline model for

the outcome is the following

yi = θi + xiβ + εi, (1)

where xi is a 1 ×K vector of explanatory variables, β is K-vector of unknown parameters, θi denotes

unit i’s unobserved effect, and εi the idiosyncratic error. We treat θi as a fixed-effect arbitrarily correlated

with one or more of the explanatory variables in xi.

The researcher observes {yi,xi, dij}ni,j=1j 6=i, where dij is a general proximity measure, i.e., social,

economical or geographical distance between units. The researcher specifies/selects a neighborhood Bd
i

based on a distance threshold d. Suppose the proximity measure is constructed using economic or social

indicators, e.g., relative GDP or trade volume. In that case, it could likely be correlated with the outcome

of interest, and the resulting neighborhood specification Bd
i forms endogenously (Qu and Lee, 2015).

However, our approach is not affected by this issue.

Let ndi = |Bd
i | be the cardinality of Bd

i , i.e., unit i has ndi neighbors including i itself. We postulate

the existence of a neighborhood specification Bd∗
i for each unit i with d∗ arbitrary small such that θi ≈

θj , ∀j ∈ Bd∗
i , i.e., there exists with probability one a small area where neighboring units share similar

unobservables. This is true if, for example, θi changes smoothly across space. Figure 1 shows two

examples of neighborhood selections. NeighborhoodsBd
1 andBd

2 (on the left) are based on the proximity
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threshold d and Bd∗
1 and Bd∗

2 (on the right) are specified using d∗ < d. The unit-specific unobservables

θi, i = 1, . . . , 4 are assumed to be smooth over the space considered. We assume that there exists a

neighborhood specification Bd∗
1 and Bd∗

2 where unobservables are approximately equal. Observe that,

nd1 = nd4 = 3 while nd
∗

1 = nd
∗

4 = 2. Further, we allow for overlapping neighborhoods, i.e., Bd
i ∩Bd

k 6= ∅
for all i 6= k and d.

Model (1) can be applied in many contexts. For instance, θi can be interpreted as a treatment spillover

when a treatment assigned to unit j also affects the outcome of the neighboring unit i. Almost all the

welfare and public health programs might generate spillovers: a cash transfer provided to the household’s

head may affect her and the partner’s labor supply; a vaccine affects the individual’s probability of getting

infected and the likelihood of disease transmission within the community. In this setting, Miguel and

Kremer (2004) study the effect of a deworming medical treatment on school absenteeism and health

status in Kenya, assuming the following linear model for the outcome

yis =
∑
d̄

γd̄T
N
sd̄︸ ︷︷ ︸

θs

+ δTs + zisβ︸ ︷︷ ︸
xis

+εis, i = 1, . . . , n, s = 1, . . . , S (2)

where Ts is a binary indicator equal to one if the deworming treatment is assigned to all pupils in school

s, TN
sd̄

is the total number of pupils in treated schools within geographical distance d̄ of school s, and γd̄
are the unknown spillover effects. Hence, the latter are assumed to be homogeneous across pupils but

heterogeneous across distances. According to our setting, we postulate for each school s the existence

of a neighborhood, Bd
s , based on a general distance function, dsj = g(TN , d̄) ∀j 6= s and a threshold

d, such that θs ≈ θj , ∀j ∈ Bd
s . This distance is specified by comparing the number of treated pupils

between schools weighted by their geographical distance. The idea is to pair similar schools in terms

of spillover effects so that if they are smooth enough, a neighborhood data transformation exists to rule

them out. See Section 6 for further details.

A different setting where model (1) can be applied is when unobservables are location or site-specific

(Duranton et al., 2011, Belotti et al., 2021). In this cases, the model for the outcome can be represented

as

yiza = θiz + γa + xizaβ + εiza, i = 1, . . . , n, a = 1, . . . ,m, z = 1, . . . , Z, (3)

where θiz is a local effect that is assumed to change smoothly over the unobserved location z, defined

at a finer spatial scale than the observed administrative location a. As before, we assume the existence

of a neighborhood for each unit i defined according to a geographical distance threshold d, Bd
iz , where

θiz ≈ θjz, ∀j ∈ Bd
iz .

3. Estimation based on neighborhood data transformations

Let ∆d be the neighborhood-difference operator. Let Nd =
∑

i(n
d
i−1)

2 be the total number of pairs

in the sample. The neighborhood (pairwise) difference transformation takes the difference between the
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observations of unit i and each j ∈ Bd
i \ i, i.e. ∆d

ijxi = xi − xj , Alternatively, the within-neighborood

transformation takes the difference between unit i and the average x̄i = 1
nd
i

∑
j∈Bd

i
xj computed consid-

ering all units j ∈ Bd
i , i.e. ∆d

i,ni
xi = xi − x̄i.

Let
∑

i<j be shorthand for
∑n−1

i=1

∑n
j=i+1. Then, the class of ND estimators indexed by the distance

threshold d can be defined as

β̂
d

ND =

 ∑
i<j,j∈Bd

i \i

∆d
ijx
′
i∆

d
ijxi

−1 ∑
i<j,j∈Bd

i \i

∆d
ijx
′
i∆

d
ijyi. (4)

Similarly, we can define the class of NW estimators as

β̂
d

NW =

[
n∑
i=1

∆d
i,ni
x′i∆

d
i,ni
xi

]−1 n∑
i=1

∆d
i,ni
x′i∆

d
i,ni
yi. (5)

Let us now state the main assumptions needed to study the asymptotic behavior of the proposed

estimators as n→∞. To ease the notation, in what follows, we remove the d superscript unless we want

to stress the dependence on d.

Assumption 1. There exists a neighborhood Bd∗
i such that ∆d∗

ij θi
p→ 0 (or ∆d∗

ini
θi

p→ 0) as d∗ → 0 uni-
formly in i = 1, . . . , n, and j ∈ Bd∗

i \ i.3

Assumption 2. (i) {∆ijxi,∆ijεi} are identically distributed across i = 1, . . . , n and each j ∈ Bi \ i.
{∆ijxi,∆ijεi} and {∆klxk,∆klεk} are independent for each j and l if Bi∩Bk = ∅ with j ∈ Bi \ i and
l ∈ Bk \ k; (ii) {∆inixi,∆iniεi} are identically distributed across i = 1, . . . , n. {∆inixi,∆iniεi} and
{∆knk

xk,∆knk
εk} are independent for each i and k if |Bi ∩ Bk| ≤ cn, where cn ≥ 0 is a data-driven

constant.

Assumption 1 is crucial for the consistency of the estimators defined in (4) and (5). The key ingredient

is indeed the specification of a shrinking neighborhood such that the resulting data transformation can

approximately rule out NUH for an arbitrary small d∗. This is true if, for example, θi changes smoothly

across space, i.e., for each δ > 0 there exists an arbitrarily small distance d∗ such that |∆d∗
ij θi| < δ (or

|∆d∗
ini
θi| < δ) for each unit. Duranton et al. (2011) impose this continuity condition in the specific case

of geographical proximity. Assumption 1 extends this deterministic condition to stochastic continuity.

We define the implied dependence structure in Assumption 2. In particular, while we assume that the

transformed observations are identically distributed, the ND transformed observations for which the

neighborhoods overlap are dependent. For the NW transformation, observations are dependent only

if the share of overlapping units is large enough. The importance of the data-driven constant cn for

the asymptotic properties of the NW estimator is clarified in Assumption 8. It is worth noting that if

Bi∩Bk = ∅ ∀ i 6= k, then neighborhoods do not overlap, and inference can be conducted using standard

tools for clustered data (Hansen and Lee, 2019).

3We define ∆d∗
ij θi

p→ 0 when d∗ → 0 as ∀ε > 0, limd∗→0 Pr(|∆d∗
ij θi| > ε) = 0.
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To study the asymptotic distribution of this class of estimators we follow the inferential approach

for dyadic data proposed by Tabord-Meehan (2019).4 The author studies the asymptotic properties of

the OLS estimator for dyadic data using the CLT for dependency graphs introduced by Janson et al.

(1988). Intuitively, a dependency graph is defined in our framework as a family of random variables

with vertex set {∆ijxi∆ijεi, i = 1, . . . n, and j ∈ Bi \ i} ({∆inixi,∆iniεi, i = 1, . . . n, }) and edges

formed by vertexes with overlapping neighborhoods (more specifically, random variables that are de-

pendent according to Assumption 2). The dependency graph definition and further details on the Jan-

son et al. (1988)’ CLT can be found in the Appendix A. Let σ2
n = var(

∑
i<j,j∈Bi\i ∆ijxi∆ijεi) or

σ2
n = var(

∑
i ∆inixi∆iniεi). We refer to the arguments of the var() operator as OLS key statistics. For

the ND and NW estimator respectively, the key condition to apply the Janson et al. (1988)’ CLT is

(# obs
Mu

)1/l
Mu

σn
→ 0 as n→∞ for some l ≥ 3, (6)

where #obs equal to N or n, and Mu is a measure of the maximum level of dependence across obser-

vations defined as

Mu
ND = max

i
|{k : Bi ∩Bk 6= ∅}|, Mu

SW = max
i
|{k : Bi ∩Bk > cn}|.

Therefore, to satisfy condition (6) the ratio between Mu and σn has to be controlled (as n gets larger).

We use Mu without subscript when it is not important to refer to a specific estimator. Observe that

Mu ≤ n− 1. Similarly, the minimum level of dependence across observations is

M l
ND = min

i
|{k : Bi ∩Bk 6= ∅}|, M l

SW = min
i
|{k : Bi ∩Bk > cn}|.

We consider two asymptotic approximations: (i) sparseness, and (ii) denseness. Under (i) the max-

imum number of overlapping neighborhood is bounded as n → ∞, while under (ii) Mu is allowed to

increase with n.

Assumption 3 (Sparseness). Mu < c for some constant c > 0 as n→∞.

Assumption 4 (Denseness). M l
ND ≥ c n for some constant c > 0 as n→∞.

Assumption 5. {xi, εi}ni=1 have uniformly bounded support for all n.

Assumption 3 is the same as Assumption AF1 in Tabord-Meehan (2019), and implies that the resulting

dependency graph for the OLS key statistics is sparse. For the denseness case, we assume that the

minimum number of overlapping neighborhoods across units grows with n. This Assumption is needed

to ensure a proper rate of growth for σn, which then satisfies the CLT condition (A.1) in Appendix A.5 To

make the derivation of the asymptotic properties manageable, Assumption 5 imposes a bounded support

4See also Fafchamps and Gubert (2007), Cameron and Miller (2014), Aronow et al. (2015) for other works on dyadic-robust
inference.

5For more details about the dense asymptotic approximation, see Section 2.3 in Tabord-Meehan (2019).
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for explanatory variables and errors. This implies that also {∆ijxi,∆ijεi} and {∆inixi,∆iniεi} have

bounded support for each i = 1, . . . , n.6

3.1. Examples

We now discuss two popular settings in which the nature of the data allows to specify neighborhoods

such that the proposed estimators can be implemented.

3.1.1. Geo-coded data

With geo-coded, units are located on a (possibly) unevenly spaced latticeD ⊂ Rd0 , d0 ≥ 1, infinitely

countable. The neighborhood, Bd
`(i), may depend on a given geographical distance threshold d, where

`(i) denotes the location of unit i. In this setting, two location units `(i) and `(j) are considered neighbors

if their pairwise distance d`(i)`(j) is below the distance threshold d. Under sparseness, i.e. increasing

domain asymptotics, a sufficient condition for having n`(i) bounded is given by Jenish and Prucha (2009):

Condition 1. The lattice D ⊂ Rd0 , with d0 ≥ 1, is infinitely countable. The location ` : {1, . . . , n} →
Dn ⊂ D is a mapping of individual i to its location `(i) ∈ Dn. All locations are located at a minimum
distance greater than 0.

This condition imposes a minimum distance requirement and implies that, for any distance threshold d,

there are at most kdd0 points in B`(i) and at most kdd0−1 points in the space Bd+1
`(i) \B

d
`(i), where k > 0

is a constant (see Lemma A.1 in Jenish and Prucha, 2009).7 Hence, the maximum degree of overlapping

neighborhoods Mu < c for some constant c > 0 as n→∞ and Assumption 3 holds. Consequently, the

sufficient key condition 6 for the CLT to hold becomes(
# obs
kdd0

)1/l
kdd0

σn
→ 0 as n→∞ for some l ≥ 3, (7)

where k and d0 are constants, #obs is equal toN or n for ND and NW, respectively, and d is the distance

threshold used to characterize the neighborhoods.

3.1.2. Network data

With (social) network data, the researcher observes a set of units i, i = 1, . . . , n, each of which

is supposed to have a reference group, i.e. peers group, Bi. An example can be students interacting

in a classroom. The degree ni, i.e. the number of peers of unit i in a given classroom, is finite so

that Assumption 3 holds. The non-stochastic interaction matrix G represents the social network within

the class, where gij = 1 if j is friend of i, 0 otherwise. Then, Mu represents the maximum number of

common friends between two students. This can be computed as maxi(
∑

j 6=i 1[g
[2]
ij > 0]+ni) where g[2]

ij

denotes the elements of the G2 matrix. The elements of G2 can be interpreted as the number of transitive

6Notice that Assumption 5 can be relaxed by adding some moment condition on (xi, εi).
7Additional details about set cardinalities for irregular lattices can be found in Lemma 1, Appendix A.
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triads between two units. In other words, both the number of first and second order connections are

considered to get Mu.

In this setting, Auerbach (2022) proposes a pairwise difference estimator for the more general par-

tially linear model. The outcome is assumed to be generated by an unknown function of unit-specific

unobservables that drives the linking behavior in a network. The proposed nonparametric pairwise dif-

ference estimator removes the unobserved social influence for those units with similar linking behaviors.

The author shows that, for a large class of nonparametric network formation models, the latter can be re-

covered from the columns of G2. Differently from Auerbach (2022), we impose a higher level condition

in Assumption 1 and that the unobservables enter model (1) linearly and additively. However, we do not

impose any specific neighborhood formation model.

3.2. Asymptotic properties

Given its popularity in applied works (see Section 1), we start by investigating the properties of the

ND estimator. While the main asymptotic results are a particular case of the OLS estimator for dyadic

data (Tabord-Meehan, 2019), to the best of our knowledge, we are the first to investigate the asymp-

totic properties of the NW estimator in the presence of overlapping clusters. To derive the asymptotic

distribution of the ND and NW estimators, we first need to strengthen the identification conditions in

Assumption 1.

Assumption 6. ∀ε > 0, limd∗→0, n→∞ Pr(
√
τn|∆d∗

ij θi| > ε) = 0, or limd∗→0, n→∞ Pr(
√
τn|∆d∗

ini
θi| >

ε) = 0 uniformly in i = 1, . . . , n, and j ∈ Bd∗
i \ i, where

√
τn is the rate of convergence for the ND and

NW estimators.89

Assumption 6 reinforces the smoothness requirement for θi so that the ND and NW estimators are asymp-

totically unbiased. We report the proofs for all the propositions in Appendix A.1.

3.2.1. The neighborhood-difference estimator

We start by assuming the rate of growth of the key statistics’ variance for the two considered asymp-

totic approximations.

Assumption 7. a) Under sparseness

B = lim
n→∞

1

N
var

 ∑
i<j,j∈Bi\i

∆ijxi∆ijεi

 =
1

N
lim
n→∞

∑
i<j,j∈Bi\i

∑
k<l∈Bk\k

cov(∆ijxi∆ijεi,∆klxk∆klεk)

is positive definite.
b) Under denseness

B = lim
n→∞

1

Nnr
var

 ∑
i<j,j∈Bi\i

∆ijxi∆ijεi

 =
1

Nnr
lim
n→∞

∑
i<j,j∈Bi\i

∑
k<l∈Bk\k

cov(∆ijxi∆ijεi,∆klxk∆klεk)

8See Propositions 1 and 2 below for the convergence rates of ND and NW estimators under sparseness and denseness.
9We thank Eric Auerbach for insightful suggestions to obtain the estimators’ asymptotic unbiasedness.
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is positive definite for some r ∈ [0, 1].

These assumptions are related to the ones made on the variance of the key statistics in the dyadic robust

literature (Aronow et al., 2015, Cameron and Miller, 2014). For an exhaustive discussion about the

relationship between σ2
n in clustered and dyadic data refer to Tabord-Meehan (2019). We are now ready

to characterize the asymptotic distribution of the ND estimator under the two asymptotic approximations.

Proposition 1. a) Under Assumptions, 2, 3, 5, 6 and 7 a),

√
N(β̂ND − β)

d→ N (0,A−1BA−1), (8)

whereA = E(∆ijxi∆ijx
′
i)
−1 andB as in Assumption 7 a).

b) Under Assumptions 2, 4, 5,6, and 7 b) with r > 0

√
N

nr
(β̂ND − β)

d→ N (0,A−1BA−1), (9)

whereA = E(∆ijxi∆ijx
′
i)
−1 andB as in Assumption 7 b).

Under denseness, the smaller is r, the closer we are to the sparse asymptotic approximation characterized

by less dependence between observations. In matrix notation, we can write the ND estimator as

β̂ND = (X ′D′DX)−1(X ′D′Dy) (10)

whereD is theN×n neighborhood differencing matrix. Hence, if the neighborhood specification forms

the pairs (1, 3), (1, 5), (2, 3), and (2, 4), among others, the first rows of the neighborhood differencing

matrix will be

D =



1 0 −1 0 0 . . .

1 0 0 0 −1 . . .

0 1 −1 0 0 . . .

0 1 0 −1 0 . . .
...

...
...

...
...

. . .


.

3.3. The within-neighborhood estimator

The denseness assumption must be strengthened for the NW estimator to decrease dependence on the

OLS key statistics. This is because the rate of growth of the variance, i.e., nr+1, is the same as Mu. The

sample size is n (not N ), so we cannot exploit the Nnr rate of growth assumed for σ2
n in sub-section

3.2.1. In particular, to satisfy condition 6, we make the following additional assumption to restrict the

growth rate of Mu
NW .

Assumption 8 (denseness). Mu
NW
n → 0 as n→∞.



9

Assumption 9. a) Under sparseness

BW = lim
n→∞

1

n
var(

∑
i

∆inixi∆iniεi) = lim
n→∞

1

n

n∑
i=1

n∑
k=1

cov

(
∆inixi∆iniεi,∆knk

xk∆knk
εk

)
is positive definite.

b) Under denseness

BW = lim
n→∞

1

nnr
var(

∑
i

∆inixi∆iniεi) = lim
n→∞

1

nnr

n∑
i=1

n∑
k=1

cov

(
∆inixi∆iniεi,∆knk

xk∆knk
εk

)
is positive definite for some r ∈ [0, 1].

Observe that also the constant cn in Assumption 2 must be large enough so thatMu
NW grows slower than

n. We are now ready to characterize the asymptotic distribution of the NW estimator.

Proposition 2. a) Under Assumptions 2, 3, 5, 6, and 9 a),

√
n(β̂NW − β)

d→ N (0,A−1
W BWA

−1
W ), (11)

whereAW = E(∆inixi∆inix
′
i)
−1 andBW as in Assumption 7 a).

b) Under Assumptions 2, 5, 6, 8, and 9 b) with r ∈ (0, 1)

√
n

nr
(β̂NW − β)

d→ N (0,A−1
W BWA

−1
W ), (12)

whereAW = E(∆inixi∆inix
′
i)
−1 andBW as in Assumption 7 b).

Unlike the ND estimator under denseness, we need to exclude in (12) the case in which r = 1; otherwise,

the asymptotic distribution is degenerate. The NW transformation can be implemented using a within-

neighborhood matrixW n defined as

W n = In −Cn,

where Cn is a n× n matrix obtained in two steps:

1. create a (binary) interaction matrix according to the neighborhoods specification;
2. substitute the main diagonal with ones and row-normalize.

We use the subscript n to stress that, in general,W n is a triangular array. In matrix notation we have

β̂NW = (X ′W ′
nW nX)−1(X ′W ′

nW ny). (13)

Remark 1 (Non-overlapping neighborhoods). If neighborhoods do not overlap, W n is a projector
and we have a formal similarity with panel data econometrics. In this case, if the neighborhoods have the
same size, then the ND and NW estimators are numerically equivalent. Furthermore, the NW estimator
is more efficient. A formal proof applies the GLS device to show that the NW estimator can be written as
a GLS ND estimator (see, among the others, Arellano, 2013).
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3.4. Estimation of the variance covariance matrix

3.4.1. Homoskedastic case

When errors in model (1) are homoskedastic, i.e. E(εε′) = σ2In, then a consistent estimator of the

asymptotic variance of the ND estimator is

V̂ ND = σ̂2Â
−1
B̂Â

−1
, (14)

with

B̂ = X ′D′DD′DX,

Â = X ′D′DX,

and an unbiased estimator of σ2 (see also, e.g. Duranton et al., 2011) is

σ̂2 =
[
tr(DD′)− tr(ÂB̂)

]−1 ∑
i<j,j∈Bi\i

∆ij ε̂i∆ij ε̂i. (15)

Similarly, for the NW estimator we have

V̂ NW = σ̂2Â
−1
W B̂W Â

−1
W , (16)

where ÂW and B̂W have the same formulation of Â and B̂ withW n in place ofD, while an unbiased

estimator of σ2 is

σ̂2 =
[
tr(W nW

′
n)
]−1

n∑
i=1

∆i,ni ε̂i∆i,ni ε̂i. (17)

3.4.2. General case

In this case, an estimator of the asymptotic variance of the ND estimator is

V̂ ND = Â
−1
B̂Â

−1
(18)

where

B̂ =
∑
i

∑
k

∑
j∈Bi∩Bk

1ij,kj 6=ji,jk∆ij ε̂i∆kj ε̂k∆ijx
′
i∆kjxk

Â =
∑

i<j,j∈Bi\i

∆ijx
′
i∆ijxi,

and 1ij,kj 6=ji,jk is the indicator of the event ∆ij∆kj 6= ∆ji∆jk. This estimator is a special case of the

general dyadic covariance estimator proposed by Tabord-Meehan (2019). Under our set of Assumptions,

we can show that (18) is consistent following Proposition 3.3 in Tabord-Meehan (2019). The finite

sample properties of this estimator has been studied in Belotti et al. (2018) who show, through Monte

Carlo simulations, that (18) outperforms other robust competitors proposed in the related literature (see,
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e.g. Fack and Grenet, 2010).

Similarly, we can write the asymptotic variance of the NW estimator as

V̂ NW = Â
−1
W B̂W Â

−1
W , (19)

where ÂW =
∑n

i=1 ∆inix
′
i∆inixi. We propose the following estimator for B̂W

B̂W =
∑
i

∑
k

1[(k∈Bi)∨(i∈Bk)∨(|Bi∩Bk>cn|)]∆ini ε̂i∆knk
ε̂k∆inix

′
i∆knk

xk,

where the indicator function selects units within the same neighborhood and units for which there is a

relevant degree of overlapping between neighborhoods, and cn is a data-driven constant that defines the

degree of neighborhoods overlapping. We conjecture that this estimator is consistent for V NW under an

appropriate selection rule for cn. We left this issue for future research.

4. Testing the neighborhood specification

Assumption 1 is a strong requirement for the consistency of the proposed estimators. To test for the

null hypothesis of smooth NUH and optimal threshold for the NDT, i.e. Assumption 1 holds, we propose

a Hausman-like test based on the contrast between ND and NW estimators that are both inconsistent

under the alternative. This strategy has been proposed by Bartolucci et al. (2015) to test for time-invariant

(versus time-varying) unit effects in generalized linear models for panel data. If the NUH is ruled out

by the ND/NW transformations (H0d), then both estimators are consistent and δ̂ = β̂ND − β̂NW
p→ 0.

On the other hand, when the transformations cannot entirely remove NUH, the two estimators may

converge in probability to different points in the parameter space. Since the two estimators are based on

different functions of the data, we expect the test to have power under a large set of alternatives. Thus,
√
τnδ̂

d→ N (δ,V δ), where δ 6= 0, τn is the rate of convergence for the NW estimator (it is slower than

the ND estimator), and V δ may be singular. Because of the asymptotic normality of our estimators, the

Hausman-like test statistic

ξ = τnδ̂
T
V̂
−
δ δ̂, (20)

has approximately a χ2 asymptotic distribution with number of degrees of freedom equal to the rank of

V̂
−
δ . Observe that V̂

−
δ = V̂ ND+V̂ NW−V̂ ND,NW−V̂

′
ND,NW , where V̂ ND,NW = Â

−1
NW B̂ND,NW Â

−1
ND,

with

B̂NW,ND = σ̂2X ′W ′
nW nD

′DX,

where σ̂2 can be estimated either with (15) or (17), and V̂
−

is a generalized inverse. The proposed test

has no power when i) the ND and NW estimators are algebraically equivalent, i.e. when the number

of neighbors is the same for each i and all neighborhood are non-overlapping (see Remark 1); ii) the

covariate(s) of interest is not correlated with the unobserved effects.

The power of our test depends on the divergence between ND and NW estimators. Hence, in this
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Section we study their asymptotic bias for a specific set of alternatives. We assume that

yi = θi + xiβ + εi, i = 1, . . . , n, (21)

xi = φθi + (1 − φ2)1/2ξi, where the εi and the ξi are i.i.d. r.v. with zero mean and unit variance and

ui = θi + εi.

Given a distance threshold d 6= d∗, the ND and NW estimation errors can then be written as

β̂NW − β =

∑n
i=1 x̃iũi∑n
i=1 x̃ix̃i

, β̂ND − β =

∑
i<j∈Bd

i \i
∆xij∆uij∑

i<j∈Bd
i \i

∆xij∆xij
,

where x̃i = ∆i,nixi and ∆xij = ∆ijxi.

As n→∞, the ND and NW asymptotic biases are10

β̂NW − β
p→ E(x̃iũi)

E(x̃ix̃i)
, β̂ND − β

p→ E(∆xij∆uij)

E(∆xij∆xij)
.

We can show thatE(x̃iũi) = φτ̃ ,E(x̃ix̃i) = φ2τ̃+(1−φ2),E(∆xij∆uij) = φ∆τ andE(∆xij∆xij) =

φ2∆τ + (1− φ2), where τ̃ = E(θi − θ̄i)2 and ∆τ = E(θi − θj)2, ∀ j ∈ Bi. The estimator asymptotic

biases become

β̂NW − β
p→ φτ̃

φ2τ̃ + (1− φ2)
, β̂ND − β

p→ φ∆τ

φ2∆τ + (1− φ2)
.

To obtain sharper results, we characterize the data generating process (DGP) of the NUH. Let us assume

that the natural logarithm of the proximity between agents is a weighted sum between two components

to ease the derivation. The first represents the difference between unobservables, and the second is a

random dyadic shock. Formally, the distance model is the following

d̄ij = α (θi − θj) + (1− α2)1/2εij (22)

where d̄ij is the natural logarithm of the distance, εij is iid across dyads with mean zero, unit variance

and uncorrelated with the θs. When α = 1 the logarithm of the distance between i and j is equal to

the difference between θi and θj . In this case, we are under H0d if for a small distance threshold d∗

the neighborhood specification is such that θi = θj ∀i = 1, . . . , n, and j ∈ Bd∗
i \ i. When α = 0 the

distance between unit i and j is random and uncorrelated to their unobservables. The detailed derivation

of the asymptotic biases under the distance model (22) and a different specification where we generate

NUH following a treatment spillover model as in 2 can be found in Appendix A.2. Under the distance

model (22), and conditioning on the event A = 1(d̄ij < d), it can be shown that the asymptotic biases

10Convergence in probability of the numerator can be proved following the same argument used for the convergence of the
denominators (A.3) and (A.6) in Appendix A.



13

will converge to

β̂ND − β
p→

φ 1
α2

{
E[d̄2

ij |A]− (1− α2)
}

φ2 1
α2

{
E[d̄2

ij |A]− (1− α2)
}

+ (1− φ2)
,

β̂NW − β
p→

φ 1
α2

{
E

[(
n−1
i

∑
j∈Bi

d̄ij

)2
|A
]
− (1− α2)E

[
n−2
i

∑
j∈Bi

ε2
ij |A

]}
φ2 1

α2

{
E

[(
n−1
i

∑
j∈Bi

d̄ij

)2
|A
]
− (1− α2)E

[
n−2
i

∑
j∈Bi

ε2
ij |A

]}
+ (1− φ2)

,

where the conditional expectations are defined as

E[d̄2
ij |A] =

∑
d: i,j∈A d̄

2
ijPr(d̄ij)

Pr(d̄ij < d)
,

E

n−1
i

∑
j∈Bi

d̄ij

2 ∣∣∣∣A
 =

∑
d: i,j∈A(n−1

i

∑
j∈Bi

d̄ij)
2Pr(d̄ij)

Pr(d̄ij < d)
.

Notice that if supij Pr(d̄ij < d) = Pr(supij d̄ij < d) = 1, then the two asymptotic biases converge

to the asymptotic bias of OLS since all the units are in the same neighborhood. This occurs when we fix

n, and we let d grow. See Section 5 for further details. On the other hand, if Pr(d̄ij < d) = 0 ∀i, j, then

the conditional expectations are not defined. In general, ∆τ increases in the conditional second moment

of the logarithm of the distance (and decreases in α). However, the asymptotic bias will converge in

probability, assuming that the second moment is bounded. Observe that the test has no power if φ = 0

and when the conditional second moment of the distance equals zero and α = 1. An example where the

distance might not vary is when observations are clustered across space.11 As for the NW estimator, τ̃

depends on the conditional second moment of the logarithm of the average neighborhood distance, i.e.,

τ̃ is a function of both distance and the number of neighbors.

To conclude, we suggest the following testing strategy to the practitioners.

Step 1 Testing for correlated NUH: we suggest to construct a test based on the contrast between OLS and

NW estimators. This test resembles a standard Hausman test, which exploits the contrast between

the random effects and within-group estimators in panel data setting. Indeed, If (i) the unobserved

effects are absent, i.e., θi = 0,∀i = 1, . . . , n or (ii) θi 6= 0,∀i = 1, . . . , n but are uncorrelated with

xi (H0), then both the OLS and NW estimators are consistent and λ̂ = β̂OLS − β̂NW
p→ 0. In

terms of efficiency, OLS is the most efficient estimator under (i) while the NW estimator is the most

efficient under (ii). Since the OLS and NW estimators depend on different functions of the data,

they generally converge in probability to different points in the parameter space in the presence

of correlated NUH, unless Pr(supij d̄ij < d) = 1, i.e. the inconsistency of both estimators is

the same. Thus, this test has power against a variety of alternatives resulting in smooth and non-

11See Section 5 for a discussion about the test size when data are generated using a clustered design.
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smooth NUH, such as omitted neighborhood factors. Because of the asymptotic normality of our

estimators, the statistic

ξNUH = τnλ̂
T
V̂
−
λ λ̂,

has approximately a centered χ2 asymptotic distribution with the number of degrees of freedom

equal to the rank of V̂
−
λ = V̂ OLS − V̂ NW .

Step 2 Testing for neighborhood specification/smooth unobservables: If H0 in step 1 is rejected by the

data, we suggest implementing the test in (20) to select the optimal threshold d∗ for the neigh-

borhood specification. In this case, the class of hypotheses is index by the threshold d. Given

the sequential nature of the Hausman-like tests, we suggest starting from a large enough distance

threshold and sequentially decreasing the threshold until the H0d hypothesis cannot be rejected by

the data. In doing so, Rosenbaum (2008) shows that this procedure allows to bound the probability

of rejecting the null hypothesis when it is true at the nominal size α. In Appendix Appendix A.3,

we formally link our testing strategy with the testing hypotheses in order framework in Rosenbaum

(2008).

5. Monte Carlo evidence

We now present some Monte Carlo evidence about the finite sample properties of the ND and NW

estimators and the size and power properties of the test statistic in (20).12

5.1. Location-specific unobserved effects

We consider two DGPs. The first represents the case where local unobservables are the same within

small non-overlapping neighborhoods (DGP1). In this case, we can determine a priori which is the

threshold distance that allows removing the local unobserved heterogeneity completely. The second

represents a more general case where the unobservables are unit-specific, and the optimal distance is

unknown (DGP2). Our data generating process for the outcome variable is

yi,b = θi,b + xi,bβ + εi,b, i = 1, . . . , n, (23)

where b = 1, . . . , B denotes the neighbourhood and θi,b ∼ bU(1, 10)c, where b·c denotes the integer

part. We then add the following model that links the distance between units to their unobservables

dij = α |θi,b − θj,b|+ (1− α2)1/2εij (24)

where α ∈ (0, 1) and εij ∼ N+(0, 1) is i.i.d. across dyads. In the first DGP α = 1. This implies that the

distance between units i and j is equal to the euclidean distance between their θs and that |θi,b−θj,b| = 0

if units i and j are in the same neighborhood b. DGP2 considers a design without clusters (the subscript

12We present the results of the simulation studies in the main text using Figures 2 - 4. The corresponding tabulations are reported
in the Supplementary Appendix (Tables S.1 - S.3).
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b is removed) where the θs are unit-specific, and set α = 0.5. To allow for dependence between the

unobservables θi and the regressor, we generate the latter as xi = φθi + (1− φ2)1/2zi, where the zi are

i.i.d. standard Gaussian. As aforementioned, with DGP1 we control the optimal threshold d∗, i.e. the

distance allowing to fully remove local unobservables; setting α = 1 implies that d∗ = 1.

For DGP1 we consider three sample sizes n = 250, 500 and 1000, β = 1, φ = 0.5 (1, 000 replications

per experiment). We set B = 50, 100 and 500, respectively (i.e., five units per neighborhood), α = 1 and

consider ten different distance thresholds, d = 1, 2, . . . , 10 for defining the neighboroods. In DGP2 we

set n = 250, 500, 1000, and 2000, α = 0.5 resulting in a continuous support for dij . It is worth noting

that, in general, setting a small distance threshold can be effective in removing the NUH, but this may

come at the cost of reducing the sample, causing estimators’ efficiency losses.

Figure 2 and 3 report the results.The top panel shows the ND and NW estimates by percentiles of dij ,

the latter used to define the neighborhood data transformations (NDT). Here, the green dotted line is the

true direct effect δ and the red dotted line is the biased OLS estimate. The bottom panel depicts the power

of the Hausman-like test again by percentiles of dij . The dotted line represents the nominal size α= 0.05.

In line with the asymptotic behavior of ND and NW estimators (see Sections 3.2.1), both estimators are

consistent under the H0d, i.e. when d = 1 (DGP1) or d is between the first and the fourth percentile of

dij (DGP2). As expected, when the percentile of dij grows, the two estimators start diverging, making a

test based on their difference powerful. This is confirmed by the results in the bottom panel, which show

tiny size distortions even though the test exhibits a slight tendency to over-reject when n is small. On the

other hand, the test is very powerful with just small deviations from the optimal distance, i.e. moving

from d=1 to d=2 (DGP1) or from d=0.5 to d=1 (DGP2). As n gets larger, estimates start diverging much

earlier, i.e., the power of the test increases for smaller percentiles as expected. When all the observations

are used as neighbors (i.e., we use the last percentile of dij as the threshold for the NDT), the ND and

NW estimators converge to OLS, and the power drops to zero.

5.2. Treatment spillover effects

The outcome is generated following the treatment spillover model interpretation is Section 2

yi = θi + Tiδ + xiβ + εi, i = 1, . . . , n, (25)

where xi ∼ N (0, 1) is an exogenous explanatory variable, Ti = 1(xi > 0) is a binary treatment

indicator, θi =
∑

j 6=i∈Ci
Tj

γ
d̄ij

withCri denoting the ball with radius r and the distance d̄ij = 1+|xi−xj |
a function of the distance between i and j in terms of the explanatory variable, and εi ∼ N (0, 0.25) the

idiosyncratic error. This setting ensures thatCorr(Ti, θi) >> 0, i.e. the spillover effects θi are correlated

with the treatment.13 We then define Dr = [dij ], a distance matrix based on the number of treated units

within the r-ball with drij = |NT
ri − NT

rj | and NT
ri =

∑
j 6=i∈Cr

i

Tj
d̄ij

. We set, r = 3, δ = β = 0.5, and

we run three experiments with n = 2300, 3000 and 6000. See Section 6 for ND and NW estimation of

13This correlation range from about 0.5 to 0.7 in our simulations.
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model (25) using real data from Miguel and Kremer (2004).14 15

Figure 4 displays our results.The top panel shows the ND and NW estimates by the percentiles of

the distance (drij), which, as before, have been used to define the neighborhoods for applying the NDT.

Here, the green dotted line is the actual direct effect δ, and the red dotted line is the biased OLS estimate,

obtained using a model in which the spillover effects are not controlled for. The bottom panel depicts the

power of the Hausman-like test again by the percentiles of the distance. The dotted line represents the

nominal size α= 0.05. Figure 4 shows that the ND and NW estimates start diverging as we increase the

threshold distance percentiles, i.e., the test becomes powerful. As the sample size increases, estimates

start diverging earlier. The power curve follows the same pattern - the test is consistent for smaller

percentiles of drij . When all the observations are used as neighbors (i.e., the last distance percentile is

used as threshold), the ND and NW estimators converge to OLS, and the power drops to zero.

6. Empirical application: Miguel and Kremer (2004)

Health programs can generate indirect effects on untreated units in the presence of externalities. This

section illustrates how practitioners can exploit NDT to estimate the direct effect of a treatment ruling

out externalities. We use data from the Primary School Deworming Project conducted in western Kenya

(Miguel and Kremer, 2004).16 Worm infection rates were relatively high in this area, especially among

school-age children. Indeed, 37% of interviewed children reported having at least one moderate-to-heavy

helminth infection (Miguel and Kremer, 2004).

An essential feature of the deworming program is that the randomization takes place at the school

level allowing to identify the direct effect of deworming even in the presence of externalities. As pointed

out by Miguel and Kremer (2004), school-level randomization naturally generates local variation in the

density of treatment that can be exploited to disentangle the direct treatment effect from the indirect

effects, i.e., spillovers across schools.

The authors consider the following specification

yis = α+ βTs +
∑
d̄

(γd̄N
T
d̄s)︸ ︷︷ ︸

observed spillover effect

+
∑
d̄

(φd̄Nd̄s) + xisδ + εis (26)

where yis is an indicator of school attendance or health status, s refers to the school, i to the student, Tis
is treatment status, Nd̄s the total number of pupils in primary schools at geographical distance d̄ from

school s, and NT
d̄s

is the number of these pupils randomly assigned to the treatment, while xis are school

and pupil characteristics. Thus, the overall average treatment effect is: β+
∑

d̄(γd̄N̄
T
d̄s

), where N̄T
d̄s

is the

14We set n=2300 following the number of observations in the empirical application, i.e., 2,328 pupils.
15We perform additional Monte Carlo experiments for DGP (25): we consider a generalized distance definition equivalent to the

empirical application, i.e., drik = |NT
ri −NT

rk|d̄ik with NT
ri =

∑
j 6=i∈Cr

i
Tj ; we set the true δ to 0.25, that is the benchmark

direct treatment effect of the deworming program (see Section 6 for details). Results remain qualitatively unchanged.
16Here, we used the updated data downloaded from Edward Miguel’s website. See the replication manual. A detailed descrip-

tion of the program can be found in Miguel and Kremer (2004).

http://emiguel.econ.berkeley.edu/assets/miguel_research/46/PSDP-REP__2014-11.pdf
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average number of treated school pupils located at distance d̄ from school s. The sample includes 2,328

pupils and 49 schools, 25 assigned to the treatment. In the parlance of our model, model (26) refers to

equation (2).

Table 1 replicates, using a linear probability model (LPM), the results on deworming health direct

effects and externalities across schools in the case of any moderate-heavy helminth infection.17 It shows

that the fraction of students with moderate to heavy infection is around 25% lower for treated schools than

for the untreated ones. It is worth noting that while Miguel and Kremer (2004) report average marginal

effects from a probit model, our LPM estimates well approximate their baseline results. However, the

latter can be easily compared with ND and NW estimates. While one of the main objectives in Miguel

and Kremer (2004) is to identify direct and indirect effects separately, we focus on estimating the direct

effects by treating the spillover effects as local unobservables. The NDT for ND and NW estimators

follows closely the settings in the Monte Carlo experiments for DGP (25) in Section 5. Consider schools

s and k, we first count the number of treated pupils within d̄ km from school s and k, i.e. NT
d̄s

and NT
d̄k

,

and then implement a generalized distance as

dsk = |NT
d̄s −N

T
d̄k|d̄sk, (27)

where d̄sk is the geographical distance in km between school s and k. Thus, the geographical distance

amplifies the difference between the exposure functions of schools s and k. We use d̄ = 6 based on the

evidence that medical treatment spillovers are likely to occur within a 6 km from the treated school (see

Miguel and Kremer, 2004). We apply the ND and NW estimators using different distance thresholds

d based on deciles of dsk. Figure 5 displays our main results; the top panel shows the ND and NW

estimates by distance deciles. Here, the green dotted line is the “benchmark” direct effect reported in

Table 1 while, the red one, is the biased OLS estimates obtained using model (26) without including

the terms
∑

d̄(γd̄N
T
d̄s

) and
∑

d̄(φd̄Nd̄s). Figure 5, bottom panel, depicts the values of the test statistic

by deciles of dsk, the dotted line represents the critical value (nominal size α= 0.1). We find that H0d,

i.e., Assumption 1 holds, is rejected before the 4th decile, the latter being the first decile where the

two estimators converge to the true “benchmark” value.18 As expected, when the test rejects H0d, also

the NW and ND direct effect estimates diverge. After the 6th decile of dsk, the test statistics increase

significantly up to the 9th decile where it suddenly drops because the ND and NW estimators converge

to the biased OLS estimates. Figure 6 replicates the same exercise by setting d̄ = 3. Results remain

qualitatively unchanged. When the ND and NW estimates are close to the true value at the third decile of

dsk,H0d cannot be rejected from the data. As the ND and NW estimates start diverging, the test becomes

powerful.

This evidence highlights the potential for the proposed tools to remove the bias due to spillovers

when the “high” level randomization exploited in Miguel and Kremer (2004) (e.g., at school, firm, or

17We specifically refer to Table A7 in the replication manual., which updates the results in Table 7 of the published paper. We
thank the authors for kindly providing us with the matrix reporting the geographical distance between the schools.

18The test statistic is computed on β after that all the regressors have been “partialled-out”.

http://emiguel.econ.berkeley.edu/assets/miguel_research/46/PSDP-REP__2014-11.pdf
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county level) cannot be implemented, for example, due to budget constraints.

7. Concluding remarks

Nowadays, the growing availability of richer and larger datasets allows for a broad definition of

proximity-based neighborhoods. For example, networks data allows for the specification of neighbor-

hoods based on social distance, geo-coded data can be used to define neighborhoods exploiting geograph-

ical distance, and large-scale surveys may provide neighborhood representations based on economic or

cultural distances.

This article proposes estimation strategies based on neighborhood data transformations (NDT) for

models with additively-separable smooth unobserved heterogeneity. We study the asymptotic properties

of the neighborhood difference (ND) and within neighborhood (NW) class of estimators. Following the

inferential framework for dyadic data proposed by Tabord-Meehan (2019), we model the dependence

between observations induced by the NDT. We present a Hausman-like test for the null hypothesis of

smooth neighborhood unobserved heterogeneity (NUH) based on the contrast between ND and NW

estimators. We describe how to exploit the test to search for the optimal distance threshold to transform

the data. Using Monte Carlo simulations, we evaluate the performance of the ND and NW estimators and

the test as a function of the threshold distance. The ND and NW estimators approach consistency when

the NUH is smooth, and the distance threshold is small enough. When the distance threshold increases,

the estimators start diverging and the test becomes powerful.

We finally demonstrate the validity of our approach using data from the seminal paper by Miguel and

Kremer (2004) on a health program in Kenya. While the authors exploit the school level randomization

to identify the direct and indirect average treatment effects, we specify the model assuming that the cross-

school externalities are unobservable. By applying the NDT based on the distance threshold suggested

by our test, we rule out the externalities and retrieve the same direct causal effect in Miguel and Kremer

(2004). The extensions of our framework to partially linear and nonlinear models are natural next steps.
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Figure 2: Monte Carlo evidence (DGP1): average estimated β and Hausman-like test performance (1000 replica-
tions)

Notes. The top graph reports average (over Monte Carlo replications) estimates for βND and βNW obtained at different distance thresholds in
presence of unobserved neighborhood heterogeneity for n = 250, 500, 1000. The first (red) dotted line reports the biased βOLS . The second
(green) dotted line reports the true value for β. The bottom graph shows the Hausman-like test performance at different distance thresholds.



Figure 3: Monte Carlo evidence (DGP2): average estimated β and Hausman-like test performance (1000 replica-
tions)

Notes. The top graph reports average (over Monte Carlo replications) estimates for βND and βNW obtained at different distance threshold
percentiles in presence of unobserved unit-specific heterogeneity for n = 250, 500, 1000, 2000. The first (red) dotted line reports the biased
βOLS . The second (green) dotted line reports the true value for β. The bottom graph shows the Hausman-like test performance at different
distance threshold percentiles.



Figure 4: Monte Carlo evidence (DGP3): average estimated δ and Hausman-like test performance (1000 replica-
tions)

Notes. The top graph reports average (over Monte Carlo replications) estimates for δND and δNW obtained at different distance threshold
percentiles assuming unobserved spillovers for n = 2300, 3000, 6000. The first dotted line is the biased δOLS . The second dotted line is the
true value for δ. The bottom graph shows the Hausman-like test performance at different distance threshold percentiles.
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Table 1: Replication of Miguel and Kremer (2004): Deworming health direct effects and externalities across
schools (Any moderate-heavy helminth infection, 1999)

Dependent Variable: Any moderate-heavy helminth infection indicator

Indicator for Group 1 (1998 Treatment) School -0.2486***
(0.0592)

Group 1 pupils within 3 km (per 1000 pupils) -0.1938**
(0.0957)

Group 1 pupils within 3-6 km (per 1000 pupils) -0.0693
(0.0696)

Notes: Grade 3-8 pupils. Unweighted linear probability model. It includes grade indicators,
school assistance controls, district exam scores and the total number of children attending pri-
mary school within a certain distance from the school according to the model. Cluster robust
standard errors at school level in parentheses. Significantly different than zero at 99 (∗ ∗ ∗), 95
(∗∗), and 90 (∗) percent confidence.

Figure 5: Hausman-like test and direct ATE - Any moderate-heavy helminth infection (6 km radius)

Notes. The top graph reports estimates for βND and βNW at different distance threshold deciles assuming unobserved spillovers. The first
dotted line is the LPM estimates of model (26). The second dotted line is the biased βOLS . The bottom graph shows the Hausman-like test
statistics δ at different distance threshold deciles.
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Figure 6: Hausman-like test and direct ATE - Any moderate-heavy helminth infection (3 km radius)

Notes. The top graph reports estimates for βND and βNW at different distance threshold deciles assuming unobserved spillovers. The first
dotted line is the LPM estimates of model (26). The second dotted line is the biased βOLS . The bottom graph shows the Hausman-like test
statistics δ at different distance threshold deciles.
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Appendix A. Appendix

Appendix A.1. Proofs of propositions

Following Tabord-Meehan (2019), we use the CLT for dependency graphs proposed by Janson et al.

(1988) to show convergence in distribution.

Theorem 1 (Janson, 1988 Theorem 2). Suppose that, for each n, {Xni}, i = 1, . . . , n is a family of
bounded random variables, |Xni| < cn, with dependency graph Gn. The maximal degree of Gn is
Degn. Let Sn =

∑
iXni and σ2

n = var(Sn). If there exists an integer l ≥ 3 such that

Rn =

(
n

Degn

)1/l
2(Degn)cn

σn
→ 0 as n→∞, (A.1)

then

Sn − E(Sn)

σn

d→N(0, 1) as n→∞.

In our context, we define the dependency graph of an estimator’s key statistic with maximal degree Mu

under Assumptions 3 and 4 or 8. For a definition of a dependency graph we follow Janson et al. (1988)

and Tabord-Meehan (2019).

Definition 1 (Dependency graph). A graph G is a dependency graph for a family of random variables
if:

1. There exist a one-to-one correspondence between the random variables and the vertex of the graph.
2. if V1 and V2 are two disjoint sets of vertices in G such that no edge of G one endpoint in V1 and

the other in V2, then the corresponding random variables are independent.

In what follows, the proof of convergence in distribution focus on the second asymptotic approxima-

tion, i.e., denseness. The first asymptotic approximation is, then, just a particular case given that Mu is

bounded. We start by deriving the asymptotic distribution of the NW estimator. This derivation is more

complex compared to the ND case since it requires strengthening the assumptions to satisfy condition

(6).

Proof of Proposition 2 b).
We have

√
n

nr
(β̂NW − β) =

[
1

n

n∑
i=1

∆inixi∆inixi

]−1
1√
nnr

n∑
i=1

∆inixi(∆iniεi + ∆iniθi). (A.2)

First, we study the convergence of the last term in the asymptotic bias expression
√

n
nr

1
n

∑n
i=1 ∆inixi∆iniθi.

Without loss of generality, let us focus on the component wise convergence. We have that
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√
n

nr
1

n

n∑
i=1

∆inixi∆iniθi ≤
√

n

nr
1

n
nmax

i
(∆inixi∆iniθi) ≤

√
n

nr
max
i

(|∆inixi∆iniθi|) ≤

≤
√

n

nr
max
i

(|∆inixi|) max
i

(|∆iniθi|) = O(1)

√
n

nr
max
i
|(∆iniθi)| = O(1)op(1) = op(1),

where the first inequality follows by triangular inequality, the third inequality by Cauchy-Schwartz in-

equality, the first equality by Assumption 5, and the second equality by Assumption 6. Let us now show

the convergence of the following statistic
[

1
n

∑n
i=1 ∆inixi∆inixi

]−1
. Without loss of generality, let us

focus on the component wise convergence 1
n

∑n
i=1(∆inixi)

2 = 1
n

∑n
i=1(xi − 1

ni

∑
j∈Bi

xj)
2. We know

that the E( 1
n

∑n
i=1(∆inixi)

2) = E(∆inixi)
2. For the variance, we have

var

 1

n

n∑
i=1

(xi −
1

ni

∑
j∈Bi

xj)
2

 =
1

n2

n∑
i=1

n∑
k=1

cov

(
(xi −

1

ni

∑
j∈Bi

xj)
2, (xk −

1

nk

∑
l∈Bk

xl)
2

)
.

Let us study how many covariances are not zero for each term. In general, for a fixed i, each agent

have at most Mu
NW ≤ n − 1 links. Observe that the cov(x2

i , x
2
k) is uniformly bounded by Assump-

tion 5. There are three different leading terms in the sums of covariances:
∑n

i=1

∑n
k=1 cov(x2

i , x
2
k),∑n

i=1

∑n
k=1 cov

((
1
ni

∑
j∈Bi

xj

)2
, x2

k

)
and,

∑n
i=1

∑n
k=1 cov

((
1
ni

∑
j∈Bi

xj

)2
,
(

1
nk

∑
l∈Bk

xl

)2
)

.

The first sum is bounded by n(Mu
NW ) that is

n∑
i=1

n∑
k=1

cov(x2
i , x

2
k) = O(n(Mu

NW )).

The equality follows because each individual has at most Mu
NW links. Observe that also i belongs to

the neighborhood (i can be equal to k). Then, we need to multiply Mu
NW by the number of terms in

the summation to obtain the the maximum number of covariances that are different from zero. For the

second term, we have

n∑
i=1

n∑
k=1

cov

 1

ni

∑
j∈Bi

xj

2

, x2
k

 =

n∑
i=1

n∑
k=1

1

n2
i

∑
l∈Bi

∑
j∈Bi

cov
(
xlxj , x

2
k

)
≤

n∑
i=1

n∑
k=1

1

Mu2
NW

∑
l∈Bi

∑
j∈Bi

cov
(
xlxj , x

2
k

)
≤ 1

Mu2
NW

O(nMu2
NW ) = O(n).

For the last relevant term, we use again the bilinearity of the covariance operator as for the second term.
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Hence, we have

n∑
i=1

n∑
k=1

cov

 1

ni

∑
j∈Bi

xj

2

,

 1

nk

∑
l∈Bk

xl

2 ≤ 1

Mu4
(n(Mu4

NW )) = O(n).

Therefore,

var

 1

n

n∑
i=1

(xi −
1

ni

∑
j∈Bi

xj)
2

 =
1

n2
O(nMu

NW ) = O

(
Mu
NW

n

)
= o(1),

where the last equality follows given that M
u
NW
n → 0 by Assumption 8. Hence,

1

n

[
n∑
i=1

∆inixi∆inixi

]−1
p→E[(∆inixi)

2]−1 (A.3)

by continuous mapping theorem given that the variance converge to zero.

Next, we study the convergence in distribution of 1√
n

∑n
i=1 ∆inixi∆iniεi. We apply Janson’s CLT to

the family of random variables
{

(xi − 1
ni

∑
j∈Bi

xj), (εi − 1
ni

∑
j∈Bi

εj)

}
. A dependency graph Gn =

(V,E) for this family of random variables is the graph with vertex set V =

{
(xi − 1

ni

∑
j∈Bi

xj)(εi −

1
ni

∑
j∈Bi

εj)

}
i=1,...,n, j∈Bi

and edge set

E =

{{
(xi −

1

ni

∑
j∈Bi

xj)(εi −
1

ni

∑
j∈Bi

εj), (xk −
1

nk

∑
l∈Bk

xl)(εk −
1

nk

∑
l∈Bk

εl)

}
: (A.4)

∆inixi∆iniεi,∆knk
xk∆knk

εk ∈ V and |Bi ∩Bk| > cn

}
.

The maximal degree is Mu
NW by definition and by Assumption 5 |∆inixi∆iniεi| < c for all n and c

constant. Now, we can check the main condition of Janson’s CLT theorem. Let

Bn = var(
∑
i

∆inixi∆iniεi).

In this framework the key (sufficient) condition to Janson’ s CLT to apply is the following

Rn =

(
n

Mu
NW

)1/l
Mu
NW c

√
Bn

=

(
n

Mu
NW

)1/l
Mu
NW c

√
nnr

·
(

1

nnr
Bn

)−1/2

.

The second term of the product converge toB1/2 by Assumption 9. The first term can be written
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(
n

Mu
NW

)1/l

√
nr

Mu
NW c√
n

,

Mu
NW c√
n
→ c̄ <∞ by Assumption 8. Hence,

(
n

Mu
NW

)1/l

√
nr

→ 0

if
n

1
l

n
r
2

→ 0,

given Assumption 8 (n is faster than Mu
NW ). This means choosing an r and l sufficiently large such that

1/l < r/2. So Rn → 0 and the condition for the Janson’s CLT are satisfied.

Hence, we have ∑
i ∆inixi∆iniεi√

Bn

d→N(0, 1),

that can be written as,

1√
nnr

∑
i

∆inixi∆iniεi

(
1

nnr
Bn

)−1/2

.

Therefore, by Assumption 9 we have

1√
nnr

∑
i

∆inixi∆iniεi
d→N(0,BW ).

We then apply the Slutsky’s Theorem to each component and the Cramer-Wold device together with the

Janson’s CLT to (A.2) and conclude that√
n

nr
(β̂NW − β)

d→ N (0,A−1
W BWA

−1
W ).

Proof of Proposition 2 a).
Just a particular case of the Proof of Proposition 2 b) with Mu

NW < c and a different rate of

convergence for the distribution of the estimator.

Proof of Proposition 1 b).
We can write the ND estimator as

√
N

nr
(β̂ND − β) =

 1

N

∑
i<j,j∈Bi\i

∆ijxi∆ijxi

−1√
N

nr
1

N

∑
i<j∈Bi\i

∆ijxi(∆ijεi + ∆ijθi). (A.5)
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First, we study the convergence of the last term in the asymptotic bias expression
√

N
nr

1
N

∑
i<j∈Bi\i ∆ijxi∆ijθi.

Without loss of generality, let us focus on the component wise convergence. We have that

√
N

nr
1

N

∑
i<j∈Bi\i

∆ijxi∆ijθi ≤
√
N

nr
1

N
N max

ij
(∆ijxi∆ijθi) ≤

√
N

nr
max
ij

(|∆ijxi∆ijθi|) ≤

≤
√
N

nr
max
ij

(|∆ijxi|) max
ij

(|∆ijθi|) = O(1)

√
N

nr
max
ij
|(∆ijθi)| = O(1)op(1) = op(1),

where the first inequality follows by triangular inequality, the third inequality by Cauchy-Schwartz in-

equality, the first equality by Assumption 5, and the second equality by Assumption 6.

Let us now show the convergence of the following statistic
[∑

i<j,j∈Bi\i ∆ijxi∆ijxi

]−1
. Without

loss of generality, let us focus on the component wise convergence 1
N

∑
i<j,j∈Bi\i(∆ijxi)

2. We know

that E( 1
N

∑
i<j,j∈Bi\i(∆ijxi)

2) = E(∆ijxi)
2. For the variance, we have

var

 1

N

∑
i<j,j∈Bi\i

(∆ijxi)
2

 =
1

N2

∑
i<j,j∈Bi\i

∑
k<l∈Bk\k

cov((∆ijxi)
2, (∆klxk)

2).

Given that each agent have at most Mu
ND links, the inner summation of the covariances is nonzero for at

most 2Mu
ND units. Furthermore, the cov((∆ijxi)

2, (∆klxk)
2) is bounded by Assumption 5. Therefore,

var

 1

N

∑
i<j,j∈Bi\i

(∆ijxi)
2

 =
1

N2
O(NMu

ND) = O

(
Mu
ND

N

)
= o(1),

where the last equality follow Mu
ND ≤ n− 1 and from the fact that N ≤ 2Mu

NDn.

Hence,

1

N

 ∑
i<j,j∈Bi\i

(∆ijxi)
2

−1

p→E[(∆ijxi)
2]−1, (A.6)

by continuous mapping theorem given that the variance converge to zero.

Next, we study the convergence in distribution of
√

N
n

1
N

∑
i<j,j∈Bi\i ∆ijxi∆ijεi. We apply Janson’s

CLT to the family of random variables {∆ijxi∆ijεi}.
A dependency graph Gn = (V,E) for this family of random variables is the graph with vertex set

V =

{
(xi − xj)(εi − εj)

}
i<j, j∈Bi

and edge set

E =

{{
(xi − xj)(εi − εj), (xk − xl)(εk − εl)

}
: ∆ijxi∆ijεi,∆klxk∆klεk ∈ V and Bi ∩Bk 6= ∅

}
.

The maximal degree is Mu
ND ≤ n− 1 by definition and by Assumption 5 |∆ijxi∆ijεi| < c for all n and
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c constant. Now, we can check the main condition of Janson’s CLT theorem. Let

Bn = var

( ∑
i<j,j∈Bi\i

∆ijxi∆ijεi

)
.

The key (sufficient) condition to Janson’ s CLT to apply is the following

Rn =

(
N

Mu
ND

)1/l
(Mu

ND)c
√
Bn

=

(
N

Mu
ND

)1/l
Mu
NDc

√
Nnr

·
(

1

Nnr
Bn

)−1/2

.

The second term of the product converges toB1/2 by Assumption 7. The first term is bounded by

n
1
l

n
r
2

,

given Assumption 4. This means choosing an r and l sufficiently large such that 1/l < r/2. So Rn → 0

and the condition for the Janson’s CLT are satisfied.

Hence, we have ∑
i<j,j∈Bi\i ∆ijxi∆ijεi

√
Bn

d→N(0, 1),

that can be written as,

1√
Nnr

∑
i<j,j∈Bi\i

∆ijxi∆ijεi

(
1

Nnr
Bn

)−1/2

.

Therefore, by Assumption 9 we have

1√
Nnr

∑
i<j,j∈Bi\i

∆ijxi∆ijεi
d→N(0,B).

We then apply the Slutsky’s Theorem to each component and the Cramer-Wold device together with the

Janson’s CLT to (A.5) and conclude that√
N

nr
(β̂ND − β)

d→ N (0,A−1BA−1).

Proof of Proposition 1 a).
Just a particular case of the Proof of Proposition 1 b) with Mu

ND < c and a different rate of conver-

gence for the distribution of the estimator.

Appendix A.2. Estimator asymptotic biases

Appendix A.2.1. Distance model

We report the distance model (22) below



33

d̄ij = α (θi − θj) + (1− α2)1/2εij (A.7)

where d̄ij is the natural logarithm of the distance, εij is iid across dyads with mean zero, unit variance

and not correlated with the θs. To ease the notation let us remove the conditioning event A = 1(d̄ij < d)

from the expectation operator. Using model (A.7) and ∆τ definition in Section 4 we have

∆τ = E (θi − θj)2 = E

(
1

α
(d̄ij − (1− α2)1/2εij)

)2

=

=
1

α2

(
E(d̄2

ij) + (1− α2)E(ε2
ij)− 2(1− α2)E(ε2

ij)
)

=
1

α2

(
E(d2

ij)− (1− α2)E(ε2
ij)
)
.

The asymptotic bias of the ND estimator can be characterized as

β̂ND − β
p→

φ 1
α2

(
E(d̄2

ij)− (1− α2)E(ε2
ij)
)

φ2 1
α2

(
E(d̄2

ij)− (1− α2)E(ε2
ij)
)

+ (1− φ2)
.

For the NW estimator, we can rewrite an averaged version of the distance model as follows

1

ni

∑
j∈Bi

d̄ij = α

θi − 1

ni

∑
j∈Bi

θj

+ (1− α2)1/2 1

ni

∑
j∈ni

εij .

Hence, τ̃ can be written as

τ̃ = E

θi − 1

ni

∑
j∈Bi

θj

2

=
1

α2
E

 1

ni

∑
j∈ni

d̄ij − (1− α2)1/2 1

ni

∑
j∈Bi

εij

2

=

1

α2

E
 1

ni

∑
j∈Bi

d̄ij

2+ (1− α2)E

 1

n2
i

∑
j∈Bi

ε2
ij

− 2(1− α2)E

 1

n2
i

∑
j∈Bi

ε2
ij


1

α2

E
 1

ni

∑
j∈Bi

d̄ij

2− (1− α2)E

 1

n2
i

∑
j∈Bi

ε2
ij


The asymptotic bias of the NW estimator can be characterized as

β̂NW − β
p→

φ 1
α2

{
E

[(
1
ni

∑
j∈Bi

d̄ij

)2
]
− (1− α2)E

[
1
n2
i

∑
j∈Bi

ε2
ij

]}
φ2 1

α2

{
E

[(
1
ni

∑
j∈Bi

d̄ij

)2
]
− (1− α2)E

[
1
n2
i

∑
j∈Bi

ε2
ij

]}
+ (1− φ2)

.
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Appendix A.2.2. Treatment spillovers

Let us assume that NUH is generated by a treatment spillover effect as follows

θi = γ
∑
j∈Bi

Tj + (1− γ2)1/2vi, (A.8)

where vi is an i.i.d. rvs with zero mean and unit variance. In this case it can be shown that

∆τ = γ2[E(
∑
l∈Bi

Tl −
∑
k∈Bj

Tk)
2] + [E(vi)

2 + E(vj)
2](1− γ2).

given that vi and Ti are not correlated and vi has mean zero. Thus,

∆τ = γ2[E(
∑
l∈Bi

Tl −
∑
k∈Bj

Tk)
2] + 2(1− γ2),

where the second term of the summation comes from E(vi)
2 + E(vj)

2 = 2. Thus, the ND asymptotic

bias depends on the second moment of the difference between number of treated neighbors for unit i and

j. In a similar way, we can derive the asymptotic bias for τ̃ .

Appendix A.3. Sequential Hausman-like tests and error rate

This Appendix shows that the sequence of Hausman-like tests performed to find the optimal threshold

d∗ does not result in more frequent rejection of the true hypotheses. In doing so, we follow the approach

for testing hypotheses in order given by Rosenbaum (2008).19 LetD = 1, 2 . . . , κ be a totally ordered set

with order �. In our framework, D represents the set of threshold distances. Let Hd, d ∈ D, be a class

of hypotheses, indexed by the threshold d. For each hypothesis, Hd, the researcher fixes a nominal size

α. If Hd is true then pr(pd ≤ α) ≤ α, where pd is the p-value for the Hausman-like test implemented

at the threshold distance d. The sequence of hypotheses Hd is indexed by all the distances that satisfy

the inequality d ≤ d∗. In this context, the distance threshold κ − 1 is preferred to κ, i.e. κ � κ − 1 if

κ− 1 ≤ κ. Further, we assume that there is some Hd∗ , that is true and for all d ≺ d∗, Hd is false.

Sequential Hausman-like Tests procedure. For each d ∈ D, test Hd at nominal size α if and only

if Hd1 , d1 ∈ D, has been previously tested (at nominal size α) and rejected for all d1 ≺ d (d1 > d);

otherwise do not test Hd.

The Sequential Hausman-like Tests procedure falls into the Method 1. proposed in Rosenbaum

(2008). The author shows that the probability of the researcher rejecting at least one true hypothesis

using Method 1. is at most α (Proposition 1). In other words, under these assumptions and the ordering

nature of the hypotheses, the sequentiality of this procedure does not affect the probability of type I error.

19Sales (2017) provides an alternative method for sequential specification tests using an illustrative example similar to ours: the
selection of bandwidth for a regression discontinuity design.
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Observe that the researcher can also prefer κ � κ − 1 if κ − 1 ≥ κ. In this case, one can start from a

smaller enough d1 and sequentially increases the threshold up to the first d so that it is not rejected by

the data. One motivation for this order of priority is that when d is too small, too many units (isolates)

are removed from the sample, resulting in a loss of efficiency for the estimators.

Appendix A.4. Set cardinalities for irregular lattices

We report Lemma A.1 (ii) and (iii) in Jenish and Prucha (2009).

Lemma 1. Let D ⊂ Rd0 , d0 ≥ 1, be an infinitely countable unevenly spaced lattice. For any distance
d there are at most k1d

d0 points in Bd
i and k2d

d0−1 points in Bd
i /B

d−1
i , where k1 and k2 are positive

constants.
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Supplementary Appendix

Additional Tables and Figures

Table S.1: Monte Carlo evidence (DGP1). Average estimated β and Hausman-like test performace (1000 replica-
tions)

d 1 2 3 4 5 6 7 8 9 10
n = 250

ND 1.002 1.189 1.464 1.735 1.957 2.129 2.251 2.331 2.374 2.386
(0.999) (1.131) (1.301) (1.448) (1.559) (1.640) (1.695) (1.730) (1.748) (1.753)

NW 1.001 1.055 1.190 1.424 1.715 1.994 2.192 2.312 2.371 2.386
(0.996) (1.036) (1.129) (1.274) (1.435) (1.574) (1.666) (1.719) (1.743) (1.750)

χ2 1.093 14.084 38.780 50.454 46.902 32.507 16.833 6.170 0.826 0.000
[0.050] [0.990] [1.000] [1.000] [1.000] [0.999] [0.975] [0.530] [0.025] [0.000]

n = 500
ND 1.000 1.190 1.468 1.738 1.961 2.131 2.253 2.334 2.378 2.390

(1.001) (1.136) (1.307) (1.454) (1.565) (1.645) (1.700) (1.735) (1.754) (1.759)
NW 1.000 1.045 1.181 1.418 1.714 1.995 2.195 2.316 2.374 2.390

(1.000) (1.034) (1.128) (1.276) (1.440) (1.580) (1.672) (1.726) (1.751) (1.758)
χ2 1.164 32.369 83.866 105.743 96.740 66.716 34.263 11.977 1.542 0.000

[0.074] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [0.916] [0.085] [0.000]
n = 1000

ND 1.002 1.196 1.474 1.744 1.966 2.135 2.256 2.337 2.381 2.394
(0.999) (1.135) (1.306) (1.453) (1.564) (1.642) (1.697) (1.732) (1.751) (1.757)

NW 1.002 1.044 1.179 1.419 1.718 1.998 2.197 2.318 2.378 2.394
(0.998) (1.029) (1.124) (1.274) (1.439) (1.578) (1.670) (1.723) (1.749) (1.756)

χ2 1.016 71.515 176.294 216.993 196.484 135.604 70.067 24.960 3.632 0.000
[0.050] [1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [0.999] [0.326] [0.000]

Notes: The table reports average (over Monte Carlo replications) estimates for βND and βNW and the Hausman-like test statistics performance
at different distance thresholds d (percentiles of the distance) for n = 250, 500, 1000. Root mean squared errors and p-values for the tests are
reported in round and squared brackets, respectively. The true value for β = 1.
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