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1. Introduction

Economic agents are influenced by the characteristics and behaviors of their neighbors. When these

factors are not observed, they might confound the causal effect of an explanatory variable on the outcome

of interest. For instance, better schools tend to be located in better neighborhoods, which complicates

the estimation of the causal effect of school quality on house prices. If the researcher does not observe

neighborhood characteristics, then the impact of school quality may be overestimated (Black, 1999).

Similarly, the impact of local taxation on firms’ performance may be confounded by unobserved site-

specific characteristics which affect firms’ location choices (Duranton et al., 2011). In the context of

health-related outcomes, counties in low-regulation states bordering high-regulation states may exhibit

higher cancer death rates due to increased industrial activity and pollution exposure (Kahn, 2004). Esti-

mating the causal impact of local regulations on health outcomes is challenging, as unobserved factors,

such as cross-border pollution, can confound the observed effects.

A popular solution to deal with these issues is to pair units according to their proximity. If neigh-

borhood unobservables are additively-separable and “sufficiently smooth”, then an appropriate linear

transformation can be used to rule them out. This strategy was pioneered by Holmes (1998), who ex-

ploited geo-coded data to apply a spatial “differencing” transformation.2 Despite its widespread use, the

existing literature neither rigorously investigates the properties of the differencing estimator nor provides

guidance on how to properly select and pair neighboring units. Moreover, when the sample represents

only a small fraction of the population, inference primarily relies on sampling uncertainty. However, as

sampling rates approach zero, such as in surveys or small-sample administrative data, the number of ob-

served neighbors in the sample may be very limited. Conversely, when the sample effectively constitutes

the entire population, as is often the case with spatial data, the availability of observed neighbors is no

longer a concern, and sampling uncertainty becomes negligible.

This paper studies neighborhood differencing (ND) and within-neighborhood (NW) estimators in a

finite population framework. We establish their asymptotic distribution and develop a strategy to test for

the presence of smooth fixed effects and select the optimal threshold for data transformation.

We follow the inferential framework proposed by Abadie et al. (2020) and Xu and Wooldridge (2022)

to account for design uncertainty and model the spatial dependence. In particular, we adopt a finite

population viewpoint by introducing spatial correlation within the population before sampling. We derive

sufficient conditions to apply the central limit theorem (CLT) of Xu and Wooldridge (2022) under spatial

Near Epoch Dependence (NED, Jenish and Prucha, 2012), which allows for zero sampling probability

in the limit. The neighborhood data transformations (NDT) remove the spatial dependence induced by

the smooth fixed effects, but introduce a mechanical correlation. We find that there is no need to correct

standard errors for this correlation if we are sampling from a superpopulation. Additionally, when the

sampling probability is positive, the finite population asymptotic variance is smaller than that of the

2Applications of this strategy are many and include studies on the effects of school quality on house prices (Black, 1999, Fack
and Gret, 2010, Gibbons et al., 2013, Harjunen et al., 2018), the effect of local taxes on firm performance (Belotti et al., 2021,
Duranton et al., 2011), the effects of tax policies on county level outcomes (Chirinko and Wilson, 2008), the evaluation of
placed-based policy (Einiö and Overman, 2020) and the effect of pollution havens on mortality (Kahn, 2004).
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superpopulation counterpart. This result extends the findings on the conservativeness of finite population

variance estimation (Neyman, 1923, Abadie et al., 2020, Xu and Wooldridge, 2022) in the context of

neighborhood unobservables.

This paper extends the linear regression framework in Abadie et al. (2020) accounting for spa-

tial dependence. In doing so, it exploits lower-level conditions of the M-estimation theory in Xu and

Wooldridge (2022). Our approach is related to, but different from, the pairwise differencing strategies

in Auerbach (2022) and Druckenmiller and Hsiang (2018). Auerbach (2022) proposes a partially linear

model for network data in which an unknown function of social unobservables drives the linking behav-

ior. The author considers a nonparametric pairwise differencing estimator that removes the unobserved

heterogeneity for units with similar linking behavior. Differently from Auerbach (2022), we impose a

higher level condition, i.e., the existence of a neighborhood specification allowing the elimination of

the fixed effects, which enters the model linearly and additively. However, we do not assume any spe-

cific neighborhood formation model. Our framework nests Druckenmiller and Hsiang (2018) who study

identification and estimation of spatial first differences regression models where the spatial difference

transformation is only applied to first-order contiguous neighbors.

We develop a fixed-sequence testing strategy allowing us to detect smooth fixed effects and, if the data

support their presence, to select the optimal proximity threshold, i.e., the best neighborhood specification,

to transform the data.

Specifically, to test the null hypothesis of non-smooth fixed effects, we propose using the Mundlak

(1978) approach. This method is particularly well-suited to our setting because, regardless of the selected

distance threshold, neighborhood averages fail to capture fixed effects when they are not spatially smooth.

However, when fixed effects are smooth, these averages effectively detect their presence. Once smooth

fixed effects have been detected, we test for the optimal distance by leveraging the contrast between the

ND and NW estimators. Unlike the standard version of the Hausman test (Hausman, 1978), we compare

estimators that are both inconsistent under the alternative. As pointed out by Ruud (1984), what matters

for a specification test to have power is that it is based on estimators that diverge under the alternative and

that the sampling variance of their difference is sufficiently small. We show that, since our alternative

estimators rely on different functions of the data, they generally converge in probability to distinct points

in the parameter space as the distance increases. Notably, the asymptotic biases of the ND and NW

estimators converge to the OLS bias when the transformation is applied using the maximum observed

distance between units. Clearly, in cases where both estimators exhibit the same degree of inconsistency,

our test lacks power.

We illustrate the usefulness of our approach using geocoded data from the seminal work by Miguel

and Kremer (2004), which investigates the effect of a deworming medical treatment on school absen-

teeism and health status in Kenya. The authors exploit a specific type of field experiment, where the

randomization occurs at the school level, to disentangle the direct average treatment effect from the in-

direct cross-school externalities. We exploit our testing strategy to detect the presence of smooth fixed

effects and to determine whether they extend beyond a specific radius. We detect smooth fixed effects

within a six-kilometer radius - three kilometers beyond the distance selected by the authors. This finding
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supports adopting a longer and more granular specification of cross-school externality terms, allowing

for the estimation of a larger and more precise average cross-school externality effect.

The article is organized as follows. Section 2 introduces our statistical model. Section 3 describes

the proposed estimators and studies their asymptotic properties. Section 4 presents a testing strategy

to detect the presence of smooth fixed effects and select the optimal distance for data transformation.

Section 5 investigates the finite sample properties of the proposed estimators and test statistics using

Monte Carlo simulations. In Section 6, we illustrate the proposed methodology exploiting geocoded

data from a clustered randomized medical treatment program. Section 7 concludes.

2. The statistical model

Following Abadie et al. (2020) and Xu and Wooldridge (2022), we consider a sequence of finite

populations subset Dn, where D is a potentially irregular lattice in Rd (d ≥ 1), and n indexes a sequence

of finite populations. The location ℓ : 1, . . . , n → Dn ⊂ D is a mapping of individual i to its location

ℓ(i) ∈ Dn. All locations are located at a minimum distance greater than 0. Let {tℓ(i),n, ℓ(i) ∈ Dn, n ≥
1} and {θℓ(i),n, ℓ(i) ∈ Dn, n ≥ 1} be triangular arrays of random fields defined on a probability space

(Ω,F , P ). For simplicity, we use the notation {ti, i ∈ Dn, n ≥ 1} to indicate {tℓ(i),n, ℓ(i) ∈ Dn, n ≥
1}. Same for the other variables.

Unit i in the population is characterized by a potential outcome function, yi(·), which maps the

treatment assignment column vector ti = (ti1, . . . , tiK)′ into outcomes. Realized outcomes are denoted

by yi. While potential outcomes and attributes remain fixed through repeated sampling, the outcomes

and the assignment may change. For each population, we have an associated sample, Ri = 1 if unit i in

population n is sampled, and 0 otherwise, so that N =
∑

iRi. We assume the following linear model

for the potential outcomes

yi(ti) = t′iβi + θi + ϵi, (1)

where θi is a stochastic unobserved attribute arbitrarily correlated with ti, ϵi is an unobserved non-

stochastic attribute, and βi is a unit-level column vector of treatment responses. The researcher observes

(yi, t
′
i, z

′
i, dij) for each unit in the sample, where zi is a column vector of non-stochastic attributes, and

dij is a general proximity measure, i.e., social, economic or geographical distance between units. The

researcher specifies/selects a neighborhood Bd
i based on a distance threshold d. Thus, economic and

social indicators should be carefully chosen to minimize potential confounding.

Let ndi = |Bd
i | be the cardinality of Bd

i , i.e., unit i has ndi neighbors including i itself. We postulate

the existence of a neighborhood specification Bd∗
i for each unit i with d∗ arbitrary small such that θi ≈

θj , ∀j ∈ Bd∗
i , i.e., there exists with probability one a small area in D where neighboring units share

similar unobservables. This is true if, for example, θi changes smoothly across space. Figure 1 shows

two examples of neighborhood selections. Neighborhoods Bd
1 and Bd

2 (on the left) are based on the

proximity threshold d and Bd∗
1 and Bd∗

2 (on the right) are specified using d∗ < d. The unit-specific

unobservables θi, i = 1, . . . , 4 are assumed to be smooth over the space considered. This implies that
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there exists a neighborhood specification Bd∗
1 and Bd∗

2 where unobservables are approximately equal.

Observe that, nd1 = nd4 = 3 while nd
∗

1 = nd
∗

4 = 2. Further, we allow for overlapping neighborhoods, i.e.,

Bd
i ∩Bd

k ̸= ∅ for all i ̸= k and d.

3. Estimation based on neighborhood data transformations

Let ∆d be the neighborhood-difference operator. The neighborhood (pairwise) difference transfor-

mation takes the difference between the observations of unit i and each j ∈ Bd
i \ i, i.e. ∆d

ijxi = xi−xj .

We denote the sample counterpart of the neighborhood-difference operator as ∆̃d
ij = Rixi − Rjxj =

Rij∆
d
ijxi, where Rij = 1 if the pair (i, j) is sampled and 0 otherwise. Let

∑
i<j be shorthand for∑n−1

i=1

∑n
j=i+1. In the population, the total number of pairs can be calculated as np =

∑
i(n

d
i−1)
2 , while

in the sample, it is denoted as Np =
∑

i<j,j∈Bi\iRij =
∑

i(N
d
i −1)
2 , where Nd

i represents the number of

sampled units in the neighborhood of unit i. Alternatively, the within-neighborhood transformation takes

the difference between the unit i and the population average x̄i =
1
nd
i

∑
j xj computed considering all

units j ∈ Bd
i , i.e. ∆d

i,ni
xi = xi − x̄i. We denote the sample counterpart of the within-neighborhood

operator as ∆̃d
i,ni

xi = Rixi − 1
Nd

i

∑
j Rjxj .

To simplify the derivation of the properties of the proposed estimators, we adopt the same approach

as presented in Abadie et al. (2020) and use the following transformations

∆ijxi = ∆ijti − λ∆ijzi, where λ =

 ∑
i<j,j∈Bi\i

E(∆ijti)∆ijz
′
i

 ∑
i<j,j∈Bi\i

∆ijzi∆ijz
′
i

−1

,

(2)

and

∆i,nixi = ∆i,niti−λNW∆i,nizi, where λNW =

(∑
i

E(∆i,niti)∆i,niz
′
i

)(∑
i

∆i,nizi∆i,niz
′
i

)−1

,

which remove the correlation with the attributes, assuming that
∑

i<j,j∈Bi\i∆ijzi∆ijz
′
i, and

∑
i∆i,nizi∆i,niz

′
i

are full rank.

Then, the class of least squares ND estimators indexed by the distance threshold d can be defined as

(β̂
d

ND, γ̂
d
ND) = argmin

(βd

ND,γd
ND)

∑
i<j,j∈Bi\i

(∆̃d
ijyi − ∆̃d

ijx
′
iβ

d
ND − ∆̃d

ijz
′
iγ

d
ND)

2.

Similarly, we can define the class of NW estimators as

(β̂
d

NW , γ̂
d
NW ) = argmin

(βd

NW ,γd
NW )

n∑
i=1

(∆̃d
i,ni
yi − ∆̃d

i,ni
x′
iβ

d
NW − ∆̃d

i,ni
z′
iγ

d
NW )2.

To ease the notation, in what follows, we remove the d superscript unless we want to stress the depen-

dence on d. We now introduce the causal estimands of interest. Let us define the following matrices
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∆ijW n =
1

np

∑
i<j,j∈Bi\i

∆ijwi,

∆ijΩn =
1

np

∑
i<j,j∈Bi\i

E∆ijwi,

where the expectation is taken over the distribution of x and ∆ijwi =

∆ijyi

∆ijxi

∆ijzi


∆ijyi

∆ijxi

∆ijzi


′

. Consider

the sample counterpart of ∆ijW n

∆̃ijW n =
1

Np

∑
i<j,j∈Bi\i

∆̃ijwi,

where ∆̃ijwi =

∆̃ijyi

∆̃ijxi

∆̃ijzi


∆̃ijyi

∆̃ijxi

∆̃ijzi


′

. The same notation applies for the NW transformation by substi-

tuting ∆ij with ∆i,ni . Below, we define our causal estimands(
βc
ND

γc
ND

)
=

(
∆ijΩ

xx
n ∆ijΩ

xz
n

∆ijΩ
zx
n ∆ijΩ

zz
n

)−1(
∆ijΩ

xy
n

∆ijΩ
zy
n

)
,

(
βc
NW

γc
NW

)
=

(
∆i,niΩ

xx
n ∆i,niΩ

xz
n

∆i,niΩ
zx
n ∆i,niΩ

zz
n

)−1(
∆i,niΩ

xy
n

∆i,niΩ
zy
n

)
,

where the superscripts used for the blocks denote the partition of interest. Following Abadie et al. (2020),

we could also define causal-sample estimands. However, to simplify the exposition, we focus exclusively

on causal estimands.3

The ND and NW estimators are defined accordingly(
β̂
c

ND

γ̂c
ND

)
=

(
∆̃ijW

xx
n ∆̃ijW

xz
n

∆̃ijW
zx
n ∆̃ijW

zz
n

)−1(
∆̃ijW

xy
n

∆̃ijW
zy
n

)
, (3)

(
β̂
c

NW

γ̂c
NW

)
=

(
∆̃d

i,ni
W xx

n ∆̃d
i,ni

W xz
n

∆̃d
i,ni

W zx
n ∆̃d

i,ni
W zz

n

)−1(
∆̃d

i,ni
W xy

n

∆̃d
i,ni

W zy
n

)
. (4)

Let us now state the main assumptions needed to study the behavior of the proposed estimators as n →
∞.

Assumption 1 (Increasing domain). Suppose Dn is a sequence of finite subsets of D such that |Dn| →
∞ an n → ∞, where the lattice D ⊂ Rd0 , with d0 ≥ 1, is infinitely countable. The location l :

3For a formal definition of these estimands in the standard OLS framework see Abadie et al. (2020).
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{1, . . . , n} → Dn is a mapping of individual i to its location l(i) ∈ Dn. All locations are located at a
minimum distance, d̄0, greater than 0, i.e, dij ≥ d̄0.

This condition imposes a minimum distance requirement and implies that, for any distance threshold d,

there are at most kdd0 points in Bd
i and at most kdd0−1 points in the space Bd+1

i \Bd
i , where k > 0 is a

constant (see Lemma A.1 in Jenish and Prucha, 2009).4 This implies that, given a small threshold d, the

number of neighbors ni is constant. Additionally, considering the space as fixed results in a constant Ni

with Ni → ni as n→ ∞.

Assumption 2 (Removing fixed effects). There exists at least one small distance d∗ ≥ d̄0 such that,

lim
d→d∗

E(∆d
ijθi)

2 = 0

(
lim
d→d∗

E(∆d
i,ni
θi)

2 = 0

)
uniformly in i = 1, . . . , n, and j ∈ Bd

i \ i as n→ ∞.

Assumption 2 is crucial for the consistency of the estimators defined in (3) and (4). The key ingredi-

ent is indeed the specification of a shrinking neighborhood such that the resulting data transformation

can approximately rule out fixed effects for an arbitrary small d∗. This is true if θi changes smoothly

across space, i.e., for each δ > 0 there exists an arbitrarily small distance d∗ such that |∆d∗
ij θi| < δ (or

|∆d∗
i,ni
θi| < δ) for each unit. Duranton et al. (2011) impose this continuity condition in the specific case

of geographical proximity. Assumption 2 extends this deterministic condition to expectations.

Assumption 3 (Assignment Mechanism). The assignments t1 . . . tn are independent of the sampling
indicators.

Assumption 4 (Random Sampling). a) There is a sequence of sampling probabilities, ρn, such that

Pr(R = r) = ρ
∑

i ri
n (1− ρn)

n−
∑

i ri ,

for all vectors r with element ri ∈ [0, 1].
b) The sequence of sampling rates, ρn, satisfies nρn → ∞ and ρn → ρ ∈ (0, 1].

Note that ρ = 0 is excluded from the range of admissible values for the sampling rate, since in that

case the sample would contain no neighbors, making spatial transformations inapplicable. Assumption

3 presupposes the independence between assignments and sampling indicators. However, we allow the

(expected) assigments to be spatially correlated (Xu and Wooldridge, 2022).5 Additionally, Assumption

(4) (a) and (b) are standard random sampling assumptions for a sequence of finite populations and allow

for the expected sample size to grow with n as outlined in Abadie et al. (2020). Observe that this implies

that for a given d there is a sequence of paired sampling probabilities, ρ2n, such that

Pr(Rp = rp) = ρ
2
∑

i<j,j∈Bi\i
rij

n (1− ρ2n)
(np−

∑
i<j,j∈Bi\i

rij),

for all vectors rij with element rij ∈ [0, 1].

4Additional details about set cardinalities for irregular lattices can be found in Lemma 8, Appendix A.3.
5See Assumption 6 below.
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Assumption 5 (Moments). a) There exist some δ > 0 such that the sequences
1
n

∑n
i=1E(|yi|4+δ), 1

n

∑n
i=1E(||xi||4+δ), 1

n

∑n
i=1(||zi||4+δ),

are uniformly bounded

b) ∆ijΩn → ∆ijΩ, which is full rank and ∆i,niΩn → ∆i,niΩ, which is full rank.

Assumption 5 a) imposes a regularity condition that constrains moments within defined bounds. Observe

that by Cauchy-Schwarz inequality also the average of expectations of cross products, i.e., 1
n

∑
i

∑
j ̸=iE(yiyj)

are bounded. Since our causal estimands are functions of population-level averages of second moments

or the expected product of random variables, Assumption 5 b) ensures the convergence of the expected

values of these sequences in the population. The next Lemma shows the convergence of ∆̃ijW n and

∆̃i,niW n.

Lemma 1. Under Assumptions 1- 5 a), ∆̃ijW n −∆ijΩn
p→0,

b) ∆̃i,niW n −∆i,niΩn
p→0.

In contrast to conventional exogeneity or unconfoundedness conditions, where residuals are assumed to

be mean-independent of the regressors, the following assumption relaxes the strict randomness of the

assignment mechanism.

Assumption 6 (Expected Assignment). a) There exists a sequence of functions fn(zi) such that

E(ti|θi) = fn(zi, θi)

b) there exists a sequence of matrices ϕn and qn, such that, for all z, as n→ ∞

fn(z, θ) = ϕnz + qnθ.

Assumption 6 implies that the expected value of the neighborhood-transformed assignment depends only

on the transformed attributes when the population is large, the distance threshold is sufficiently small,

and the unobservables are “smooth.” This assumption, together with the transformation in (2), implies

that ∆ijΩ
zx
n and ∆ijΩ

xz
n (or equivalently, ∆i,niΩ

zx
n and ∆i,niΩ

xz
n ) are matrices with entries that are

approximately zero for large populations.

Observe that, under these assumptions, our causal estimands βc
ND and βc

NW can be interpreted as

weighted averages of unit-level treatment responses, as in Abadie et al. (2020). This interpretation holds

if the sums of the assignment cross-moments are bounded. Further details are provided in Lemma 3 in

Appendix A.2.

3.1. Asymptotic distributions

We begin by defining the population residuals relative to the population causal estimands, ∆ijεi =

∆ijyi −∆ijx
′
iβ

c
ND −∆ijz

′
iγ

c
ND and ∆i,nεi = ∆i,nyi −∆i,nx

′
iβ

c
NW −∆i,nz

′
iγ

c
NW . We are agnostic

about the dependence structure of θi. However, we need to impose some restrictions on the spatial

dependence to derive the asymptotic distribution. We apply a Central Limit Theorem (CLT) as derived
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in Xu and Wooldridge (2022), which is a variation of the CLT introduced in Jenish and Prucha (2012).

Notably, this CLT takes into account the finite population framework, enhancing its applicability. We

adopt the definition of near-epoch dependent (NED) random fields in Jenish and Prucha (2012). Detailed

definitions, along with the mixing and NED conditions required for the application of the CLT, are

provided in the Appendix A.1.

To derive the asymptotic distribution of the ND and NW estimators, we first need to strengthen the

identification conditions in Assumption 2.

Assumption 7. ∀ϵ > 0, lim
d→d∗, n→∞

√
NpE|∆d

ijθi| = 0, (or lim
d→d∗, n→∞

√
NE|∆d∗

i,ni
θi|) = 0 uniformly

in i = 1, . . . , n, and j ∈ Bd∗
i \ i.6

Assumption 7 reinforces the smoothness requirement for θi so that the ND and NW estimators’ asymp-

totic distributions are centered. We provide the proofs for all the propositions in Section Appendix A.2.

3.1.1. The neighborhood-difference estimator

We begin by postulating the existence of limits for the components of the asymptotic variance of the

key statistics,
∑

i<j,j∈Bi\i∆ijxi∆ijεi.

Assumption 8.
Bcond = lim

n→∞

1

np

∑
i<j,j∈Bi\i

var(∆ijxi∆ijεi),

Bcov = lim
n→∞

1

np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

cov(∆ijxi∆ijεi∆klx
′
k∆klεl),

and
Behw = Bu +Bcond = lim

n→∞

1

np

∑
i<j,j∈Bi\i

E(∆ijε
2
i∆ijxi∆ijx

′
i),

with
Bu = lim

n→∞

1

np

∑
i<j,j∈Bi\i

E(∆ijxi∆ijεi)E(∆ijxi∆ijεi)
′,

exist and are positive definite.

We can now derive the asymptotic distribution of the ND estimator viewed as an estimator of the causal

estimand βc
ND.

Proposition 1. a) Under Assumptions, 1-8, and Assumptions 10, 11, and 12 a) in Appendix A.1

√
Np(β̂ND − βc

ND)
d→ N (0,A−1BA−1), (5)

where A = lim
n→∞

∆ijΩ
xx
n and B = ρ2(Bcond +Bcov) + (1− ρ2)Behw.

6We thank Eric Auerbach for his assistance in providing sufficient conditions for centering the asymptotic distribution of the
estimators.



9

Given the inherent “mechanical" dependence induced by the NDT, the variance of
∑

i<j,j∈Bi\i∆ijxi∆ijεi

will be a linear combination of the sum of the variances of the key statistics Bcond, a covariance term

Bcov and the expected outer product, Behw, all of which are weighted by functions of the paired sam-

pling rates. Although this case is explicitly ruled out by Assumption 4, when ρ = 0, representing the

case of a small sample drawn from a large population, the asymptotic variance reduces to the standard

Eicker-Huber-White (EHW) variance. This case bears resemblance to the result presented in Xu and

Wooldridge (2022). The underlying intuition is that, when sampling only a negligible portion of the

population, most of the unit’s neighbors remain unobserved. Consequently, spatial transformations are

generally not applicable and there is no need to correct for any induced spatial dependence. On the con-

trary, when all units in the population are observed B = Bcond + Bcov, the researcher must take into

account the dependence induced by the transformation. Let us further decompose the covariance matrix

as Bcov = Becov −Bucov, where

Becov = lim
n→∞

1

np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

E(∆ijxi∆ijεi∆klxk∆klεl), (6)

Bucov = lim
n→∞

1

np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

E(∆ijxi∆ijεi)E(∆klxk∆klεl)
′.

Observe that when ρ > 0, the difference between the “superpopulation” part of the variance Behw +

ρ2Becov and the finite population asymptotic variance B is positive semidefinite and equals ρ2(Bu +

Bucov). This result extends the findings on the conservativeness of finite population variance estima-

tion (Neyman, 1923, Abadie et al., 2020, Xu and Wooldridge, 2022) in the context of neighborhood

unobservables.

In matrix notation, we can write the ND estimator as

β̂ND = (X̃
′
D̃

′
D̃X̃)−1(X̃

′
D̃

′
D̃ỹ) (7)

where D̃ is the Np × N neighborhood differencing matrix. Hence, if the neighborhood specification

forms the sampled pairs (1, 3), (1, 5), (2, 3), and (2, 4), among others, the first rows of the neighborhood

differencing matrix will be

D̃ =



1 0 −1 0 0 . . .

1 0 0 0 −1 . . .

0 1 −1 0 0 . . .

0 1 0 −1 0 . . .
...

...
...

...
...

. . .


.

3.2. The within-neighborhood estimator

For the variance of the NW estimator’s key statistic, expressed as
∑

i∆i,nixi∆i,niεi, there are nu-

merous components. Similar to the ND case, we must assume the existence of their limits.

Assumption 9. Bcond
NW = lim

n→∞
1
n

∑
i(1−

2
ni
)V ar(xiεi),
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Bneigh
NW = lim

n→∞
1
n

∑
i

1
n2
i

∑
j∈Bi

V ar(xjεj),

Behw
NW = Bu

NW +Bcond
NW = lim

n→∞
1
n

∑
i(1−

2
ni
)E(ε2ixix

′
i),

Behwneigh
NW = Buneigh

NW +Bneigh
NW = lim

n→∞
1
n

∑
i

1
n2
i

∑
j∈Bi

E(ε2jxjx
′
j),

with Bu
NW = lim

n→∞
1
n

∑
i(1−

2
ni
)E(xiεi)E(xiεi)

′,

Buneigh
NW = lim

n→∞
1
n

∑
i

1
n2
i

∑
j∈Bi

E(xjεj)E(xjεj)
′, and

BBi
NW = lim

n→∞
1
n

∑
i

1
n2
i

∑
j∈Bi

∑
k ̸=j∈Bi

cov

(
(xjεj), (xkεk)

)
,

BiBi
NW = lim

n→∞
1
n

∑
i

1
ni

∑
j ̸=i∈Bi

cov

(
(xiεi), (xjεj)

)
,

B∆BiBk
NW = lim

n→∞
1
n

∑
i

∑
k ̸=i cov

(
(∆i,nixi,∆i,niεi)(∆k,nk

xk,∆k,nk
εk)

)
,

exist and are positive definite.

Let Bcov
NW = BBi

NW −2BiBi
NW +B∆BiBk

NW . The covariance can be decomposed in the usual way, as shown

in equation (6), for the ND case. We can now derive the asymptotic distribution of the NW estimator

viewed as an estimator of the causal estimand βc
NW .

Proposition 2. Under Assumptions, 1- 7, 9, and Assumptions 10, 11, and 12 b) in Appendix A.1

√
N(β̂NW − β)

d→ N (0,A−1
NWBNWA−1

NW ), (8)

where ANW = lim
n→∞

∆i,niΩ
xx
n and

BNW = ρ(Bcond
ND +Bneigh

NW ) + (1− ρ)(Behw
NW +Behwneigh

NW ) + ρBcov
NW .

The same logic as the ND asymptotic variance applies here. Nevertheless, because it’s not possible

to factor out the sampling indicators, we are compelled to break down the variance by distinguishing

between the individual and neighborhood components of the within-transformation.

The NW transformation can be implemented using a within-neighborhood matrix Gn defined as

Gn = In − Cn, where Cn is a n × n matrix obtained in two steps: i) create a (binary) interaction

matrix according to the neighborhood specification; ii) substitute the main diagonal with ones and row-

normalize. In matrix notation, we have

β̂NW = (X ′G′
nGnX)−1(X ′G′

nGny). (9)

Remark 1 (Non-overlapping neighborhoods). If neighborhoods do not overlap, Gn is a projector and
we have a formal equivalence with panel/clustered data econometrics. In this case, if the neighborhoods
have the same size, then the ND and NW estimators are numerically equivalent. Furthermore, the NW
estimator is more efficient. A formal proof applies the GLS device to show that the NW estimator can be
written as a GLS ND estimator (see, among the others, Arellano, 2013).
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3.3. Estimation of the asymptotic variance

Now, we shift our focus to the challenge of estimating the asymptotic variance of our causal esti-

mands. Observe that Bcond and Bcov for the ND estimator, and Bcond
NW , Bneigh

NW and Bcov
NW for NW

estimator are challenging to estimate because the researcher cannot observe different potential outcomes

for the same unit (Neyman, 1923). For this reason, we focus on estimating the EHW and the expectation

of the cross-product component of the asymptotic variance, namely Behw, Becov, Behw
NW , B

ehwneigh
NW ,

and Becov
NW . We propose the following estimator for the asymptotic variance of the ND estimator

V̂ ND = Â−1B̂Â−1, (10)

where

B̂ =
∑

i<j,j∈Bi\i

∑
k<l,l∈Bk\k

1(ij=kl|k∈Bi|i∈Bk|k=j|i=l)∆̃ij ε̂i∆̃klε̂k∆̃ijx̂i∆̃klx̂
′
k

Â =
∑

i<j,j∈Bi\i

∆̃ijx̂i∆̃ijx̂
′
i =

∑
i<j,j∈Bi\i

(∆̃ijti − λ̂∆̃ijzi)(∆̃ijti − λ̂∆̃ijzi)
′, where

λ̂ =

 ∑
i<j,j∈Bi\i

∆̃ijti∆̃ijz
′
i

 ∑
i<j,j∈Bi\i

∆̃ijzi∆̃ijz
′
i

−1

, (11)

∆̃ij ε̂i = ∆̃ijyi − (∆̃ijti − λ̂∆̃ijzi)
′β̂

c

ND − ∆̃ijz
′
iγ̂

c
ND, and 1(ij=kl|k∈Bi|i∈Bk|k=j|i=l) is used to select

pairs for computing variances, and pairs sharing at least one common node. This estimator is a special

case of the general dyadic covariance estimator proposed by Tabord-Meehan (2019). Under our set of

Assumptions, we can show that (10) is consistent following Lemma 2 in Abadie et al. (2020). The finite

sample properties of this estimator have been studied in Belotti et al. (2018) who show, through Monte

Carlo simulations, that (10) outperforms other robust competitors proposed in the related literature (see,

e.g. Fack and Gret, 2010). Furthermore, this estimator is similar to the Spatial HAC (Heteroskedasticity

and Autocorrelation Consistent) estimator suggested by Xu and Wooldridge (2022), where weights are

set to one if dij ≤ d∗, and zero otherwise. Observe, however, that this weight definition leads to an

omission of units that overlap between neighborhoods in the summation terms.

Similarly, we can write the NW asymptotic variance estimator as

V̂ NW = Â−1
NW B̂NW Â−1

NW , (12)
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where

B̂NW =
∑
i

∑
k

1(Bi∩Bk ̸=∅)∆̃i,ni ε̂i∆̃knk
ε̂k∆̃i,nix̂i∆̃knk

x̂′
k.

ÂNW =
n∑

i=1

∆̃i,nix̂i∆̃i,nix̂
′
i =

∑
i

(∆̃i,niti − λ̂NW ∆̃i,nizi)(∆̃i,niti − λ̂NW ∆̃i,nizi)
′, where

λ̂NW =

(∑
i

∆̃i,niti∆̃i,niz
′
i

)(∑
i

∆̃i,nizi∆̃i,niz
′
i

)−1

, (13)

where ∆̃i,ni ε̂i = ∆̃i,niyi − (∆̃i,niti − λ̂NW ∆̃i,nizi)
′β̂

c

NW − ∆̃i,niz
′
iγ̂

c
NW , and 1(Bi∩Bk ̸=∅) is the in-

dicator of the event Bi ∩ Bk ̸= ∅, i.e., it selects units that belong to the same neighborhood, as well

as those shared between two neighborhoods. Let us define V ehwcov
ND = A−1(Behw + ρ2Becov)A−1,

and V ehwcov
NW = A−1

NW (Behw
NW +Behwneigh

NW + ρBecov
NW )A−1

NW . The next Lemma shows that the proposed

asymptotic variance estimators are conservative for the finite population asymptotic variances.

Lemma 2. a) Under Assumptions, 1-8, and Assumption 12 a) in Appendix A.2, V̂ ND
p→V ehwcov

ND .
b) Under Assumptions, 1- 7, 9, and Assumption 12 b) in Appendix A.2, V̂ NW

p→V ehwcov
NW .

We conjecture that we can use attributes information to improve the variance estimator, similar to the

approach in Abadie et al. (2020).

4. Testing for smooth fixed effects and optimal distance

In what follows, we propose a sequential testing strategy allowing to test for non smooth fixed ef-

fects, and conditionally on smoothness, test for the optimal specification of the neighborhood. For clarity

and simplicity, we assume that the attributes are uncorrelated with the assignments, i.e. ti = xi. By con-

sidering constant treatment effects, we can formally represent the linear regression function describing

the potential outcomes as

yi(xi) = x′
iβ + θi + ϵi, (14)

where ϵi is assumed to have zero mean and unit variance.

As outlined in the previous section, the proposed estimators outperform OLS only when the fixed

effect θi exhibits spatial smoothness. Conditional on spatial smoothness, identifying the optimal distance

threshold becomes crucial to satisfy Assumption (2). This natural ordering suggests the application of a

fixed-sequence testing strategy (Westfall and Krishen, 2001). The latter is based on a stepwise procedure

in which, for each hypothesis, testing is conditional upon rejecting all hypotheses earlier in the sequence.

As long as significant results are observed in all the preceding steps, this allows to controls the family-

wise error rate without the need for a multiplicity adjustment (Dmitrienko and Tamhane, 2010). In our

case, we have two sequential null hypotheses. Under the null hypothesis of non-smooth fixed effects, both

the proposed estimators and OLS are inconsistent, rendering the determination of an optimal distance
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threshold irrelevant. Conversely, if the null hypothesis is rejected in favor of smooth fixed effects, testing

for an optimal distance threshold becomes relevant and appropriate.

In order to test for the null of non-smooth fixed effects, we propose to leverage the Mundlak (1978)

device.7 Indeed, as in the case of panel data, in our context, assuming that θi = α + x̄′
iξ + ei, where

ei has zero mean and is assumed to be uncorrelated with xi, and x̄i =
1
nd
i

∑
j xj for all units j ∈ Bd

i ,

provides an alternative way to account for smooth fixed effects. Plugging-in for θi in equation (14), gives

the expanded model

yi(xi) = α+ x′
iβ + x̄′

iξ + vi. (15)

The OLS is a consistent estimator of α, β, and ξ in equation (15) when the threshold d for the NDT

is optimal. The quasi-Mundlak (QM) estimator is particularly useful in this context because, regardless

of the distance threshold, neighborhood averages fail to account for fixed effects when they are not

spatially smooth. However, when fixed effects are smooth, neighborhood averages effectively capture

their influence. This enables us to construct a powerful test for the presence of smooth fixed effects by

simply examining the joint statistical significance of the parameters ξ in model (15). It is worth noting

that the equivalence between our QM and the NW estimator only holds when neighborhoods do not

overlap, forming clusters. Section 5 presents the finite-sample performance of the QM estimator in the

presence of overlapping neighborhoods, demonstrating a behavior similar to that of NW.

If the null hypothesis of non-smooth fixed effects is rejected, the next step in our sequential test-

ing strategy can be undertaken. To identify d∗, the optimal threshold that satisfies Assumption (2), we

propose a test leveraging the contrast between the ND and NW estimators. A similar strategy has been

proposed by Bartolucci et al. (2015) to test for time-invariant (versus time-varying) unit effects in gen-

eralized linear models for panel data. In our case, if the ND/NW transformations rule out smooth fixed

effects, then both estimators are consistent for β, and β̂ND − β̂NW
p→ 0. On the other hand, when

the transformation is not able to get rid of the smooth fixed effects, both estimators are inconsistent but

converge in probability to different points in the parameter space, provided that d << dmax = supij dij .

Under the null hypothesis of optimal distance,

τn

(
β̂ND − β

β̂NW − β

)
d→ N

[(
0

0

)
,

(
V ND CND,NW

C ′
ND,NW V NW

)]
,

where τn =
√
N is the rate of convergence for the NW estimator, the slower one. This implies that

the asymptotic null distribution of τnδ̂ = τn(β̂ND − β̂NW ) is Gaussian with mean zero and variance

V δ = V ND + V NW − CND,NW − C ′
ND,NW . Consistent estimators of V ND and V NW are pro-

vided in Appendix A.4 under the homoskedasticity assumption. A consistent estimator of CND,NW is

ĈND,NW = Â
−1

NW B̂ND,NW Â
−1

ND, with

B̂ND,NW = σ̂2X ′DD′GnG
′
nX,

7We thank an anonymous referee for suggesting the possibility of constructing an “almost exact” Mundlak (1978) estimator,
which we call the quasi-Mundlak estimator.
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where σ̂2 can be estimated either with (A.16) or (A.18), and Â
−1

is provided in Appendix A.4 for both

estimators.8

Therefore, our test statistic is

ξ̂ = τnδ̂
′
V̂

−
δ δ̂, (16)

where V̂ δ = V̂ ND + V̂ NW − ĈND,NW − Ĉ
′
ND,NW , and V̂

−
δ denotes a generalized inverse of V̂ δ.9

By construction, V̂ δ is guaranteed to be non-negative definite. The asymptotic null distribution of ξ̂ as

n→ ∞ is χ2 with a number of degrees of freedom equal to the rank of V δ.

Similarly to the panel data case, the proposed test lacks power when the ND and NW estimators are

algebraically equivalent – that is, when each unit has the same number of neighbors, and all neighbor-

hoods are non-overlapping (see Remark 1). The power of the test depends on the degree of divergence

between the ND and NW estimators.

In the following, we examine the inconsistency of the ND and NW estimators in the presence of

spatially smooth unobserved heterogeneity to assess the power of the proposed test. Let us define xi =

ϕθi+(1−ϕ2)1/2ωi, and focus, for simplicity, on a single assignment assuming that E(xi) = 0. Here, ωi

represents the random component of the treatment assignment, and it is considered to be uncorrelated to

θi and has zero mean and unit variance. Given a distance threshold d ̸= d∗, the ND and NW estimation

errors can then be written as

β̂NW − β =

∑n
i=1 x̃iũi∑n
i=1 x̃ix̃i

, β̂ND − β =

∑
i<j,j∈Bi\i∆xij∆uij∑
i<j,j∈Bi\i∆xij∆xij

,

where, x̃i = ∆i,nixi, ∆xij = ∆ijxi and ui = θi + ϵi. The error ui is now stochastic, as the transforma-

tion is applied at a suboptimal distance and the randomness of θi is not fully eliminated.

As n→ ∞, the ND and NW asymptotic biases are10

β̂NW − β
p→ E(x̃iũi)

E(x̃ix̃i)
, β̂ND − β

p→ E(∆xij∆uij)

E(∆xij∆xij)
.

We can show thatE(x̃iũi) = ϕτ̃ ,E(x̃ix̃i) = ϕ2τ̃+(1−ϕ2),E(∆xij∆uij) = ϕ∆τ andE(∆xij∆xij) =

ϕ2∆τ + (1− ϕ2), where τ̃ = E(θi − θ̄i)
2 with θ̄i = n−1

i

∑
j∈Bi

θj , and ∆τ = E(θi − θj)
2, ∀ j ∈ Bi.

The estimator asymptotic biases become

β̂NW − β
p→ ϕτ̃

ϕ2τ̃ + (1− ϕ2)
, β̂ND − β

p→ ϕ∆τ

ϕ2∆τ + 2(1− ϕ2)
. (17)

This shows that our test has no power when ϕ = 0 because, in this case, both estimators are consistent

8It is important to note that the differing unit-wise and pair-wise structures of the ND and NW estimators make the derivation
of a robust version of B̂ND,NW nontrivial. Developing a heteroskedasticity-robust version of the test remains an avenue for
future research.

9 Generalized inverses are not unique, but Holly and Monfort (1986) show that test statistics of the form (16) are invariant to
the choice of generalized inverse.

10Convergence in probability of the numerator can be proved following the same argument used for the convergence of the
denominators in Lemma 1 in Appendix A.2.
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regardless of the distance threshold used for the NDT, nor when ϕ = ±1, because both converge to β±1.

For a sufficiently large n, as d increases, the test loses power because the two estimators’ asymptotic

biases converge to the OLS estimator’s asymptotic bias. Specifically, when d reaches its maximum

value, dmax, all units belong to the same neighborhood, causing the asymptotic biases of both estimators

to coincide with that of the OLS estimator. In all the other cases, the fact that β̂ND and β̂NW behave

differently as functions of d represent the source of the increasing power of our test, provided that d <<

dmax. We show the behavior of the asymptotic biases in (17) using a DGP that resembles our assumptions

(see Section 5 for additional details). Figure 2 shows the behavior of ND and NW asymptotic biases (top

panel) and the corresponding plim(β̂ND − β̂NW ) (bottom panel) over the support of d. As expected,

the biases are approximately equal to zero when d = d∗ is the optimal threshold. Then, they increase

differently as d gets larger and converge to the OLS asymptotic bias when d is close to the maximum

observed distance between units. plim(β̂ND − β̂NW ) mimics the behavior of the asymptotic power of

the test, i.e., rapidly increases when d moves away from the optimal threshold, reaches its maximum

when the divergence between the two asymptotic biases is the largest and goes to zero when d = dmax.

Observe that the class of hypotheses is indexed by the threshold d. Given the sequential nature of

the Hausman-like tests, we suggest starting from a small enough distance threshold and sequentially

increasing it until the null hypothesis of optimal distance cannot be rejected. In doing so, Rosenbaum

(2008) shows that this procedure allows to bound the probability of rejecting the null hypothesis when it

is true at the nominal size α. In Appendix Appendix A.5, we formally link our testing strategy with the

testing hypotheses in order framework in Rosenbaum (2008).

5. Monte Carlo evidence

We now present Monte Carlo evidence on the following aspects: i) the behavior of the variance

estimators in Section 3.3; and ii) the size and power of the two-step testing strategy proposed in Section

4. For all the analyses presented in this Section, we generate units located on a regular lattice using the

following potential outcomes data generating process (DGP)

yi(xi) = θi + xiβi + ϵi,

where θi is simulated as θ ∼ N (1,V), where the covariance matrix is given by V = exp
[
−M2

2s2

]
.Here,

M represents the Euclidean distance matrix for the regular lattice, and s = 2 is a smoothing parameter

that governs fixed effect smoothness. Alternatively, when fixed effects are assumed to be i.i.d., θi is

drawn from a uniform distribution, θi ∼ U [0, 3].11

Figure 3 shows the distribution of θi over the lattice for different sample sizes, comparing the

cases with and without smoothness. The population values of ϵi and βi are set as ϵi ∼ N (0, 1), and

βi = N (zi, 1), with zi ∼ N (2, 4). We follow Abadie et al. (2020) by keeping fixed θi, βi, and ϵi

11For the non-smooth case, we also simulated θi ∼ N (1, σ2). The results of these alternative simulation experiments remain
qualitatively similar, but the differing support of θi makes the graph less clear-cut.
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over simulation repetitions. Thus, the treatment is the only stochastic component of the DGP, and is

generated in each simulation replication. It is correlated with the smooth unobservables according to

xi = ϕθi + (1 − ϕ2)1/2ωi, where ωi ∼ N (0, 1) is the random part of the assignment and ϕ is the

correlation parameter. All experiments are conducted with 10, 000 simulation repetitions.

To study the behavior of the variance estimators in equations (10) and (12), we set s = 2 and

ϕ = 0.5, generating a population of size n = 10, 000 units. In each simulation repetition, we randomly

sample units with probability ρ from this population. We consider four designs with different sampling

probabilities, ρ = (0.1, 0.5, 0.9, 1). Consequently, the sample sizeN is random for the first three designs

withE[N ] = nρ. For each design and repetition, we apply the ND, NW and QM estimators (see 7, 9 and

15) and the corresponding proposed robust variance estimators (see 10 and 12) using the optimal distance

threshold.12 Table 1 presents the results. Specifically, we report the standard deviations of (β̂ND−βcND),

(β̂NW − βcNW ), and (β̂QM − βcQM ) across repetitions, along with the average standard errors from the

proposed estimators and their corresponding 95% confidence interval coverage rates. For the first design

where ρ = 0.1, the proposed variance estimators provide accurate estimates of the standard deviations

of (β̂ND − βcND) and (β̂NW − βcNW ), while the EHW estimator is already conservative for the average

causal effect in the case of the QM estimator. When ρ gets larger, all the considered variance estimators

are conservative, and their coverage rate is almost equal to the nominal coverage. This evidence extends

the findings on the conservativeness of finite population variance estimation (Neyman, 1923, Abadie

et al., 2020, Xu and Wooldridge, 2022) to regression models with smooth neighborhood unobservables,

where spatial analogs of first-differencing and within-group transformations are required.

As for the size and power analysis of the two-step testing strategy proposed in Section 4, we use the

same DGP as in the previous exercise and set ϕ = 0.5. However, rather than sampling from a larger

finite population, we generate smaller populations of varying sizes, n ∈ 400, 1600, 3600, allowing for

randomness in the error term.13

First, we examine the properties of the test for detecting smooth fixed effects. We generate i.i.d.

fixed effects to assess the test size, while power is analyzed using spatially smooth fixed effects. For

each simulation repetition, we apply the QM estimator for a set of distance thresholds excluding the

optimal distance and test whether the coefficient associated with the neighborhood averages (x̄i) is equal

to zero using a heteroskedasticity-robust F statistic. Table 2 reports the size (panel a) and power (panel b)

of our test by sample size, along with the mean and standard deviation (SD) of the test statistic. The table

provides two clear takeaways. First, the proposed test exhibits overall small size distortions, especially

as the population increases. However, size distortions tend to rise with larger distance thresholds and

remain moderate when n = 400. Second, the test shows excellent power regardless of the distance

threshold or population size.

Second, we analyze the properties of the Hausman-like specification test, once again setting s = 2

12For the QM estimator, being the OLS estimator of the parameters in model (15), we use the standard EHW sandwich covari-
ance matrix.

13This approach is equivalent to drawing a small random sample from a large population. The simulation results remain
quantitatively unchanged when non-stochastic errors are used.
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for generating smooth fixed effects. Figure 4 illustrates the power of the test as a function of population

size and the distance threshold used to define neighborhoods, starting from the optimal distance. The red

dotted line represents the nominal size α = 0.05. Consistent with the asymptotic behavior of the ND

and NW estimators (see Figure 2), both estimators converge to the true average causal effect when the

distance is optimal. In this case, under the null hypothesis, the test exhibits a size that closely matches

the expected nominal level. As the distance threshold increases, the two estimators begin to diverge, and

the test becomes highly powerful even for minor deviations from the optimal distance. As expected, as

the population size gets larger, the power of the test significantly improves. However, as the distance

threshold further increases, the ND and NW estimators gradually converge toward the OLS estimator

(see also Figure 2), resulting in a progressive decline in test power.

6. Empirical illustration: Miguel and Kremer (2004)

For illustrative purposes, we use data from the primary school deworming project conducted in west-

ern Kenya (Miguel and Kremer, 2004, MK).14 Worm infection rates were relatively high in this area,

especially among school-age children. Indeed, 37% of interviewed children reported having at least one

moderate-to-heavy helminth infection.

An essential feature of the deworming program is that the randomization takes place at the school

level, allowing the identification of the effect of deworming even in the presence of externalities. As

pointed out by MK, school-level randomization naturally generates local variation in the density of treat-

ment that can be exploited to disentangle the direct treatment effect from the indirect effects, i.e., exter-

nalities across schools.

The authors consider the following spatial externality model

yis = α+ βTs +
∑
d

(γdN
T
ds)︸ ︷︷ ︸

observed externalities

+
∑
d

(ϕdNds) + xisδ + ϵis (18)

where yis is an indicator of school attendance or health status, s refers to the school, i to the student, Tis
is treatment status, Nds the total number of pupils in primary schools at geographical distance d from

school s, and NT
ds is the number of these pupils randomly assigned to the treatment, while xis are school

and pupil characteristics. Thus, the overall average deworming effect is: β +
∑

d(γdN̄
T
ds), where N̄T

ds

is the average number of treated school pupils located at distance d from school s. The sample includes

2,328 pupils and 49 schools, 25 assigned to the treatment. The terms denoted by the curly bracket below

in equation (18) capture cross-school externalities that, in this context, are likely to diffuse smoothly over

space.

Table 3, Columns 3 and 6, replicates the results for moderate-to-heavy helminth infections reported

14Here, we use the updated data available in the Miguel and Kremer (2004)’s replication package, downloadable here. A
detailed description of the deworming program can be found in Miguel and Kremer (2004). The replication code for the
analysis in this Section is available from the authors upon request.

https://doi.org/10.7910/DVN/28038
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in Miguel and Kremer (2014, Table B.1) using a weighted linear probability model.15 In particular,

Column 6 presents the LPM estimates of model (18), where both NT
ds and Nds are included for pupils

located within 0-3 and 3-6 kilometers.16 As observed, there is no evidence of cross-school externalities

at a distance of 3-6 kilometers. Furthermore, including this term in the regression renders the average

cross-school externality effect statistically insignificant. Based on this evidence, MK argue that incor-

porating the 3-6 kilometer effect is inappropriate and select the specification that excludes this term as

the preferred model. This specification, replicated in Column 6, yields a statistically significant average

cross-school externality effect and provides a more precise estimate of the overall deworming effect.

While a primary objective in MK is to estimate the overall deworming effect by distinguishing be-

tween direct effects and cross-school externalities, our focus here is on testing for the presence of local

smooth fixed effects. Such effects may arise from imperfect randomization, selective school absenteeism,

treatment non-compliance, or infection transmission dynamics, potentially introducing bias in the esti-

mation of the overall deworming effect (Miguel and Kremer, 2004). Importantly, they may also capture

observed, potentially smooth, externalities.

To address this, we first use the QM-type regression in equation (15), which can be interpreted as a

homogeneous version of the MK model in equation (18), to test the null hypothesis of non-smooth fixed

effects. Specifically, we estimate the following model using OLS

yis = α+ βTs + γdN
T
ds + xisδ + ϵis. (19)

Notably, our test does not require including Nds in the model, as in equation (18), since this term is

essential for capturing cross-school externalities but redundant when testing for smooth fixed effects. If

smooth fixed effects are detected, the next step is to apply the Hausman-like specification test in (16) to

determine the optimal distance at which they no longer pose a problem for inference. Given the structural

similarity between QM- and MK-type regressions, this distance allows us to specify an MK-type model

that effectively captures cross-school externalities while minimizing potential bias from locally smooth,

correlated unobservables.

Table 4, Column 5, shows that the null hypothesis of non-smooth fixed effects can be rejected at all

distances except 2 kilometers, indicating the presence of smooth, correlated unobservables. Additionally,

Column 6 reveals that 4 kilometers is the first distance threshold at which we fail to reject the null

hypothesis that ND and NW estimators are equal.17 Interestingly, at 5 kilometers, the null hypothesis is

rejected again, but from 6 kilometers onward, it is no longer rejected. We interpret this as evidence that

some smooth fixed effects may persist beyond 4 kilometers, suggesting that the MK-type model should

account for a finer specification of externalities up to 6 kilometers. This specification helps control for

15We specifically refer to Columns 2 and 3 of Table B.1 in the Miguel and Kremer (2014, replication manual), which updates
the results in Table 7 of the published paper. We thank the authors for kindly providing us with the matrix reporting the
geographical distance between schools.

16It is important to note that, while MK present average treatment effects from a probit model, our LPM replication closely
approximate their results.

17The test statistic is computed by contrasting the β̂ coefficient in model (18), after partialling out all other regressors.
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unobserved local heterogeneity while improving the identification of cross-school externalities.

Guided by this evidence, we also estimated model (18) using a more granular specification of cross-

school externality terms. Table 3, Columns 1 and 2, present these estimates. We find that specifying

externality terms in 2-kilometer steps captures larger and more precisely estimated average cross-school

externality effects, which are statistically different at 5% (χ2-stat = 5.85 for the difference between the

two effects18) from those selected by MK, and reported in Column 6. This result also underscores that

including the 4-6 kilometers externality effect is justified from a mean squared error perspective, as

advocated by the authors (Miguel and Kremer, 2014, Replication Manual, Section 4.9).

7. Concluding remarks

Nowadays, there is a growing availability of larger datasets incorporating geo-coded information. If

inference relies on sampling uncertainty, the researcher may find that only a few neighbors are observed

in the sample when the sampling rate is negligible. Conversely, sampling uncertainty approaches zero

when the sample effectively represents the entire population, as is often the case with spatial data.

This article proposes estimation strategies based on neighborhood data transformations (NDT) for

models with additively-separable smooth unobserved heterogeneity. The proposed framework integrates

design-based with sampling-based uncertainty. We study the asymptotic properties of the neighborhood

difference (ND) and within neighborhood (NW) class of estimators. Following the inferential framework

outlined by Abadie et al. (2020) and Xu and Wooldridge (2022) to account for design uncertainty and

model the spatial dependence, we adopt a finite population viewpoint by introducing spatial correlation

within the population before sampling. We propose a testing strategy to assess whether fixed effects are

spatially smooth by leveraging a quasi-Mundlak approach and selecting the optimal distance based on the

contrast between ND and NW estimators. Through Monte Carlo simulations, we validate the theoretical

predictions about the finite population asymptotic variance and evaluate the performance of the proposed

variance estimators. Further, we study the size and power of our testing strategy across varying threshold

distances. We find that, as suggested by theory, ND and NW estimators approach consistency when the

fixed effects are smooth and the distance threshold used for transformation is optimal. When the distance

threshold increases, the estimators start diverging, making powerful the test based on their contrast.

Finally, we illustrate the usefulness of our approach using data from the seminal study by Miguel

and Kremer (2004) on a health program in Kenya. While the authors leverage school-level randomiza-

tion to identify direct and indirect average treatment effects, we focus on testing for local smooth fixed

effects and determining the optimal distance threshold. Applying an NDT at different thresholds reveals

significant smooth fixed effects up to six kilometers, supporting an MK-type specification that includes

all cross-school externality terms, rather than only those up to three kilometers, as originally suggested

by the authors. Notably, we find that the average cross-school externality effect is larger and more pre-

cisely estimated. This suggests that expanding similar interventions across a wider geographic area could

18We run the test using standard errors clustered at school level and taking into account the covariance between the two average
cross-school externality effects.
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amplify their overall impact, maximizing health benefits at a lower marginal cost.

Future extensions of our framework naturally include partially linear and nonlinear models, along

with the formal derivation of the quasi-Mundlak estimator’s properties.
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Figure 2: Asymptotic biases of ND and NW.

Notes. The top graph reports the asymptotic biases in (17) at different distance thresholds d ∈ [d∗, supij dij ]. The dotted red line indicates
the bias of the OLS estimator. The bottom graph shows the computation of plim(β̂ND − β̂NW ) based on the difference of the ND and NW
asymptotic biases in 17. θi is generated according to the data generating process described in Section 5, setting ϕ = 0.5 and n = 3, 600.
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Figure 3: Distribution of θ.

(a) n = 20

(b) n = 40

(c) n = 60
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Table 1: Monte Carlo evidence: Standard errors and coverage for nominal 95% confidence intervals

ND
ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 1

sd(β̂ − βc) 0.248 0.072 0.048 0.046
Coverage based on sd(β̂ − βc) 0.948 0.936 0.954 0.946
Average ŝe 0.249 0.076 0.053 0.050
Coverage based on ŝe 0.943 0.949 0.967 0.961

NW
ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 1

sd(β̂ − βc) 0.246 0.073 0.049 0.048
Coverage based on sd(β̂ − βc) 0.951 0.942 0.952 0.949
Average ŝe 0.248 0.076 0.053 0.050
Coverage based on ŝe 0.950 0.949 0.967 0.953

Quasi-Mundlak
ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 1

sd(β̂ − βc) 0.238 0.069 0.047 0.046
Coverage based on sd(β̂ − βc) 0.946 0.941 0.945 0.950
Average ŝe 0.243 0.073 0.052 0.049
Coverage based on ŝe 0.948 0.953 0.968 0.957

Notes: The table reports the standard deviation of (β̂ − βc) over replication, the coverage for nominal 95% intervals for different
sampling rates: ρ = (0.1, 0.5, 0.9, 1) for a population of n = 10, 000 units with βi = N (zi, 1), with zi ∼ N (2, 4). We employ
10, 000 simulation repetitions.
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Table 2: Size and power analysis of the test for smooth fixed effects by sample size (Step 1)

(a) Non-smooth (b) Smooth

n = 400

d Mean SD Size

0.75 0.8 1.12 0.026
1 0.8 1.22 0.035
1.25 0.8 1.13 0.029
1.5 0.9 1.30 0.039
1.75 0.8 1.10 0.026
2 0.8 1.11 0.028
2.25 0.8 1.17 0.029
2.5 0.8 1.08 0.023
2.75 0.7 0.98 0.019
3 0.7 1.06 0.024
3.25 0.7 0.96 0.015
3.5 0.7 0.97 0.017

n = 400

d Mean SD Power

0.75 11.4 6.40 0.911
1 21.9 8.97 0.997
1.25 26.4 9.67 1.000
1.5 29.1 10.21 1.000
1.75 29.3 10.05 1.000
2 30.1 10.30 1.000
2.25 29.8 10.39 1.000
2.5 27.2 9.51 1.000
2.75 25.3 9.17 1.000
3 23.5 8.79 0.999
3.25 19.2 7.88 0.997
3.5 16.0 7.08 0.986

n = 1600

d Mean SD Size

0.75 0.9 1.36 0.046
1 0.9 1.30 0.039
1.25 1.0 1.36 0.046
1.5 1.0 1.32 0.042
1.75 1.0 1.48 0.056
2 1.0 1.44 0.054
2.25 1.1 1.48 0.057
2.5 1.1 1.60 0.066
2.75 1.2 1.62 0.071
3 1.2 1.71 0.076
3.25 1.3 1.74 0.083
3.5 1.4 1.84 0.090

n = 1600

d Mean SD Power

0.75 78.9 16.80 1.000
1 94.4 18.20 1.000
1.25 100.4 18.74 1.000
1.5 102.9 18.84 1.000
1.75 103.9 18.98 1.000
2 101.1 18.81 1.000
2.25 97.2 18.15 1.000
2.5 92.6 17.68 1.000
2.75 85.5 16.64 1.000
3 77.2 15.84 1.000
3.25 68.6 14.84 1.000
3.5 58.2 13.42 1.000

n = 3600

d Mean SD Size

0.75 1.1 1.50 0.058
1 0.9 1.33 0.043
1.25 0.9 1.25 0.039
1.5 0.8 1.18 0.031
1.75 0.9 1.24 0.036
2 0.9 1.22 0.035
2.25 0.9 1.24 0.038
2.5 0.9 1.22 0.035
2.75 0.9 1.22 0.036
3 1.0 1.30 0.042
3.25 1.0 1.29 0.042
3.5 0.9 1.26 0.039

n = 3600

d Mean SD Power

0.75 368.7 39.31 1.000
1 397.6 40.89 1.000
1.25 410.5 41.40 1.000
1.5 414.9 41.58 1.000
1.75 411.9 40.74 1.000
2 398.3 40.00 1.000
2.25 380.9 38.56 1.000
2.5 357.2 36.97 1.000
2.75 331.1 34.90 1.000
3 302.4 33.11 1.000
3.25 275.9 30.53 1.000
3.5 248.2 28.40 1.000

Notes: The table reports the size (panel a) and power (panel b) of our test by sample size, along with the mean and standard deviation
(SD) of the test statistic. We employ 10, 000 simulation repetitions.
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Figure 4: Power curve of the test for optimal distance by sample size (step 2).

Notes. The optimal distances are d∗ = 0.75 (n = 20), d∗ = 0.40 (n = 40) , and d∗ = 0.25 (n = 60). The distances reported on the x-axis
has been shifted so that all three lines originate from the same starting point (d∗ = 1). At the optimal distance, the test operates under the null
hypothesis, with the plot displaying the size of the test. As d increases, the lines depict the power of the test (10,000 Monte Carlo replications).
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Table 3: Replication and new evidence on the findings of Miguel and Kremer (2014) (Any moderate-heavy
helminth infection, 1999)

1km step 2km step 3km step 1km step 2km step 3km step
(long) (long) (long) (short) (short) (short)

Indicator for Group 1 (1998 Treatment) School -0.199*** -0.240*** -0.297*** -0.256*** -0.272*** -0.318***
(0.0555) (0.0531) (0.0548) (0.0495) (0.0496) (0.0501)

Group 1 pupils within 1 km (per 1000 pupils) 0.627* 0.608*
(0.3466) (0.3578)

Group 1 pupils within 1-2 km (per 1000 pupils) -0.061 -0.144
(0.1349) (0.1418)

Group 1 pupils within 2-3 km (per 1000 pupils) -0.325*** -0.296***
(0.0929) (0.0983)

Group 1 pupils within 3-4 km (per 1000 pupils) -0.302** -0.068
(0.1168) (0.1022)

Group 1 pupils within 4-5 km (per 1000 pupils) -0.061
(0.0931)

Group 1 pupils within 5-6 km (per 1000 pupils) -0.072
(0.1076)

Group 1 pupils within 2 km (per 1000 pupils) 0.025 -0.093
(0.1517) (0.1492)

Group 1 pupils within 2-4 km (per 1000 pupils) -0.280*** -0.217***
(0.0773) (0.0773)

Group 1 pupils within 4-6 km (per 1000 pupils) -0.083
(0.0562)

Group 1 pupils within 3 km (per 1000 pupils) -0.186** -0.205**
(0.0873) (0.0814)

Group 1 pupils within 3-6 km (per 1000 pupils) -0.047
(0.0687)

F -stat 5.804 4.496 2.297 8.022 4.820 6.344
(p-value) 0.000 0.007 0.112 0.000 0.012 0.015
R̄2 0.519 0.508 0.505 0.510 0.503 0.502
Avg overall cross-school externality effect -0.217 -0.218 -0.127 -0.100 -0.135 -0.084
(t-stat) -2.879 -2.997 -1.339 -2.320 -3.098 -2.519
Overall deworming effect -0.416 -0.458 -0.424 -0.355 -0.407 -0.402
(t-stat) -5.975 -7.410 -5.484 -6.743 -7.842 -8.080

Notes: Grade 3-8 pupils. Linear probability model estimation, cluster robust standard errors at school level in parentheses. Observations are weighted by total school
population. Significantly different from zero at 99% (***), 95% (**), and 90% (*) confidence levels. The 1999 parasitological survey data are for Group 1 and Group 2
schools. The pupil population data is from the 1998 School questionnaire. The specification includes the same set of control variables used in Miguel and Kremer (2014):
grade indicators, school assistance controls, district exam scores and the total number of children attending primary school within a certain distance from the school. The
F -stat reported in the bottom panel is testing the joint statistical significance of the cross-school externality terms included in the model. R̄2 is the adjusted R2.
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Table 4: Testing for non-smooth fixed effects and optimal distance.

# pupils avg neighbors # pairs H0: non-smooth H0: Optimal
Distance fixed-effects distance

2 Km 1,502 69.14 25,962 0.38 14.16
(0.542) (0.000)

3 Km 2,088 133.02 69,438 4.65 7.23
(0.036) (0.007)

4 Km 2,328 190.97 111,143 4.59 1.45
(0.037) (0.228)

5 Km 2,328 291.96 169,923 5.25 4.40
(0.026) (0.036)

6 Km 2,328 389.44 226,651 5.20 1.08
(0.027) (0.299)

Notes: The table reports test statistics and p-values (in parentheses) for the two-step testing strategy by distance
thresholds for the sample of Grade 3-8 pupils. For additional details see Section 4.
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Appendix A. Appendix

Appendix A.1. NED conditions and CLT

We first introduce useful definitions based on the NED and mixing concepts in Jenish and Prucha

(2012) and Xu and Wooldridge (2022).

Definition 1. For any random vector Y , ∥Y ∥p = (E|Y |p)1/p denotes its Lp-norm. Denote Fi,n(s) as a
σ-field generated by the random vectors θ’s located within the neighborhoodBs

i , which is a ball centered
at the location l(i) with a radius s in d0-dimensional Euclidean space D.

Definition 2. Let M = {Min, i ∈ Dn,m ≥ 1} be a random field, and let θ = {θi, i ∈ Tn, n ≥ 1} be
another random field, where |Tn| → ∞ as n → ∞. Let ν = {νin, i ∈ D,n ≥ 1} be an array of finite
positive constants. Then the random field M is said to be Lp(d)-near-epoch dependent on the random
field θ if:

∥Min − E(Min|Fin(s))∥p ≤ νinψ(s)

for some sequence ψ(s) ≥ 0 with lim
s→∞

ψ(s) = 0. The ψ(s) are called the NED coefficients, and the νin
are called the NED scaling factors. M is said to be Lp-NED on θ of size −λ if ψ(s) = O(s−µ) for
some µ > λ > 0.

To derive the limiting distributions of our estimators we need to assume that both yi, and xi are NED on

θi that is a mixing process. This is true for example if θi is an infinite moving average random field (so

that it can be assumed to be smooth over the space) under some conditions, i.e. θi =
∑

j∈Zd bijζj , with

lim
s→∞

supn,i∈Zd

∑
j∈Zd,dij>s |bij,n| < 0, and supn,i∈Zd ||ζin||p is finite with p > 1 (Jenish and Prucha,

2012). The NED property is preserved when performing summation, multiplication, and Lipschitz trans-

formations, thus the NED properties will be preserved under NDT. In accordance with the approach

described in Xu and Wooldridge (2022), we adhere to the mixing definition presented in Bradley and

Tone (2017). The distance between any subsets K, V ∈ D is defined as d(K,V ) = inf{dij : i ∈
K, and j ∈ V }.

Definition 3. Let A and B be two sub-σ-algebras of F , and let

α(A,B) = sup (|P (AB)− P (A)P (B)|, A ∈ A, B ∈ B)
and

ρ(A,B) = sup |corr(f, g)|, f ∈ L2
real(A), g ∈ L2

real(B).

For K ⊆ Dn and V ⊆ Dn, let σn(K) = σ(θi, i ∈ K) and αn(K,V ) = α(σn(K), σn(V )).
Then, the α-mixing coefficient for the random field θ is defined as:

α(r) = sup
n

sup
K,V

(αn(K,V ), d(K,V ) ≥ r) .

The maximal correlation coefficient is defined as:

ρ(r) = sup
n

sup
K,V

(ρn(K,V ), d(K,V ) ≥ r) .

Based on Lemma B.4 from Xu and Wooldridge (2022), we employ a modified Central Limit Theorem

(CLT) for Non-Equidistantly Dependent (NED) processes to establish convergence in distribution.
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Theorem 1 (CLT for NED processes). Let {qni, 0 ≤ i ≤ Dn, , n ≥ 1} be a real valued zero-mean
random field that is L2−NED on θ = {θi,n, i ∈ Dn, n ≥ 1}, with the scaling factors νin and the NED
coefficients ψ(s). Let us define, Qn =

∑
i∈Dn

Ri√
ρn
qin and σn = V ar(Qn). Let us assume

a) supn,i∈Dn
E(|qni/cin|)2+δ <∞ for some δ > 0, where cin > 0 is a sequence of constants.

b) for any fixed s > 0, there exist a positive constatnt C such that for any n and every nonempty
set K ⊆ Dn, E(

∑
i∈K

Ri√
ρn
E(qni/jn|F(s)))2 ≥ C

∑
i∈K E( Ri√

ρn
E(qni/jn|F(s)))2, where jn =

maxi∈Dn{cin, νin},

c) infn |Dn|−1j−2
n σ2n > 0,

d) NED coefficients ψ(s) is of size −ν,

e) NED scaling factors satisfy supn,i∈Dn
c−1
in νin ≤ C <∞,

then, under Assumptions 1, 3, 4, and 10

Qnσ
−1
n

d→N(0, 1).

To establish the asymptotic normality of βND and βNW , we need to introduce additional technical

conditions for the application of Theorem 1. These supplementary assumptions may not be straightfor-

ward to interpret, as exemplified in prior work (see, for example, Jenish and Prucha, 2012). You can refer

to Lemma 4 and 6 for a detailed examination of how these conditions are applied. We provide a list of

these conditions below.

Assumption 10 (Mixing condition). For the input random field θ: (i) α(r) → 0 as r → ∞; (ii)
lim
r→∞

ρ(r) < 1.

Assumption 11 (NED condition). The random field M = (y,x) is L2−NED on θ = {θin, i ∈ Tn, n ≥
1} with the scaling factors ν and the NED coefficients ψ(s) of size −ν .

Assumption 12. a) ND estimator: let ∆ijεi = ∆ijyi−∆ijxiβ
cs−∆ijziγ

cs and ∆ijVni = a′∆ijxi∆ijεi

for any conformable vector a. We assume, that, infnp n
−1
p σ2n > 0, where σ2n = V ar(

∑
i<j∈Bi\i

Rij√
ρ2n
(∆ijVni−

µij)), and supn,i∈Dn
νin <∞. Furthermore, there exists a constan C such that,

∑
i<j∈Bi\i

∑
k ̸=i<l∈Bk\k

E

(
E

(
∆ijVi

∣∣∣∣Fin(s)

)
E

(
∆klVk

∣∣∣∣Fkn(s)

))
≥ C.

b) NW estimator: let ∆i,niεi = ∆i,niyi − ∆i,nixiβ
c − ∆i,niziγ

c and ∆i,niVni = a′∆i,nixi∆i,niεi
for any conformable vector a. We assume that infn n−1σ2n > 0, where σ2n = V ar(

∑
i

1√
ρn
(RiVi −

1
ni

∑
j RjVj −ρn(µi− 1

ni

∑
j µj)), and supn,i∈Dn

νin <∞. Furthermore, there exist a constant C such
that ∑

i

∑
k ̸=i

E

(
E

(
Vi

∣∣∣∣Fin(s)

)
E

(
Vk

∣∣∣∣Fkn(s)

))
≥ C,

∑
i

∑
k ̸=i

E

(
E

(
1

ni

∑
j∈Bi

Vj

∣∣∣∣Fin(s)

)
E

(
1

nk

∑
l

Vl

∣∣∣∣Fkn(s)

))
≥ C.
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Appendix A.2. Proofs of propositions

Under Assumption 2, it’s important to note that all expectations and probabilities are implicitly con-

ditioned on d = d∗. Throughout the subsequent proofs, we frequently rely on Assumption 3 (the Assign-

ment mechanism) without explicit reference.

Proof of Lemma 1 a).
The proof follows the same argument as in Abadie et al. (2020). Let

∆ijW n =
1

np

∑
i<j,j∈Bi\i

∆ijwi

∆ijΩn =
1

np

∑
i<j,j∈Bi\i

E∆ijwi,

where the expectation is taken over the distribution of x and ∆ijwi =

∆ijyi

∆ijxi

∆ijzi


∆ijyi

∆ijxi

∆ijzi


′

. Consider

the sample counterpart of ∆ijW n

∆̃ijW n
1

Np

∑
i<j,j∈Bi\i

∆̃ijwi,

where ∆̃ijwi =

∆̃ijyi

∆̃ijxi

∆̃ijzi


∆̃ijyi

∆̃ijxi

∆̃ijzi


′

.

Let ∆ijW
(k,l)
i be the (k, l) element of the matrix ∆ijW n, the same apply for the other matrices. By

Assumption 4 for any fixed 0 < ϵ < 1, there is np,ϵ such that np > np,ϵ, we have npρ2n > −log(ϵ). So,

for np > np,ϵ we have

Pr(Np = 0) =

(
1− npρ

2
n

np

)np

<

(
1 +

log(ϵ)

np

)np

< elog(ϵ) = ϵ.

This implies that Pr(Np = 0) → 0 and

E

(
(∆̃ijW

(k,l)
i −∆ijΩ

(k,l)
i )2|Np = 0

)
Pr(Np = 0) = (∆ijΩ

(k,l)
i )2Pr(Np = 0) → 0

by Assumption 5 a), Holder’s inequality, and w.l.o.g. assuming that the elements of ∆̃ijW n = ∆̃ijΩn =

0 when Np = 0. For any integer 1 ≤ n1 ≤ np, observe that

E

(
np
Np

∆̃ijw
(k,l)
i −E(∆ijw

(k,l)
i )

∣∣∣∣Np = n1

)
=
np
n1
E(Rij(w

(k,l)
i −w(k,l)

j )|Np = n1)−E(∆ijw
(k,l)
i ) = 0

(A.1)

given that E(Rij |Np = n1) =
n1
np
.



34

Now, to show the convergence in probability of the terms of interest we compute the convergence in

(conditional) quadratic mean. We start with the following term

E

((
1

np

∑
i<j,j∈Bi\i

np
Np

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)2∣∣∣∣Np = n1

)
.

We can rewrite this as:

1

n2p

∑
i<j,j∈Bi\i

(
E

(
np
Np

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)2∣∣∣∣Np = n1

)
(A.2)

+
1

n2p

( ∑
i<j,j∈Bi\i

∑
f ̸=i<g,g∈Bf\f

E

((
np
n1

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)(
np
n1

∆̃fgw
(k,l)
f − E(∆fgw

(k,l)
f )

)∣∣∣∣Np = n1

)
.

Thus, the first term of (A.2) becomes

1

n2p

( ∑
i<j,j∈Bi\i

E

(
np
Np

∆̃ijw
(k,l)
i −E(∆ijw

(k,l)
i )

)2∣∣∣∣Np = n1

)
≤ 1

n2p

( ∑
i<j,j∈Bi\i

E

(
np
Np

∆̃ijw
(k,l)
i

)2∣∣∣∣Np = n1

)
.

Then,

1

n2p

( ∑
i<j,j∈Bi\i

E

(
np
Np

∆̃ijw
(k,l)
i

)2∣∣∣∣Np = n1

)
=

=
1

n2p

( ∑
i<j,j∈Bi\i

n2p
n21
E(Rij(w

(k,l)
i − w

(k,l)
j )|Np = n1)

2

)
=

=
1

n2p

( ∑
i<j,j∈Bi\i

n2p
n21
E(R2

ij |Np = n1)E((∆ijw
(k,l)
i )2)

)
.

So, conditional on Np = n1, we can factor for E(Rij) =
n1
np

=
1

n2p

( ∑
i<j,j∈Bi\i

np
n1
E((∆ijw

(k,l)
i )2

)
≤ C

n1
,

where the last inequality holds by Assumption 5 a) for large np.

Let

Ξ̃n1 =


(

1
np

∑
i<j,j∈Bi\i

np
Np

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)2

if n1 > 0

0 if n1 = 0
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and

Ξn1 =

C/n1 if n1 > 0

0 if n1 = 0

E

((
1

np

∑
i<j,j∈Bi\i

np
Np

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)2∣∣∣∣Np > 0

)
Pr(Np > 0) = E(Ξ̃Np) ≤ E(ΞNp).

Now, we want to study the behavior of ΞNp when np goes to infinity. Observe that, for any ϵ > 0,

Pr(ΞNp > ϵ) ≤ Pr(0 < Np < C/ϵ) < Pr(Np < C/ϵ) because ΞNp can be also zero and the last

interval includes the previous ones. Now for any ϵ > 0 if we apply the Chernoff’s bounds to a sum of

bernoully rvs we have:

Pr(Np < C/ϵ) = Pr(Np < (1− δ)npρ
2
n) ≤ exp(−δ2npρ2n/2) → 0,

where δ =
(npρ2n−C/ϵ)

npρ2
. Thus, ΞNp = op(1) and given that it is bounded also E(ΞNp) = o(1). Let us

denote E(∆ijw
(k,l)
i ) = µij . The second term of (A.2) becomes

1

n2p

( ∑
i<j,j∈Bi\i

∑
f ̸=i<g,g∈Bf\f

E

((
np
n1

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)(
np
n1

∆̃fgw
(k,l)
f − E(∆fgw

(k,l)
f )

)∣∣∣∣Np = n1

)
=

(A.3)

=
1

n2p

( ∑
i<j,j∈Bi\i

∑
f ̸=i<g,g∈Bf\f

(
E(∆ijw

(k,l)
i ∆fgw

(k,l)
f )− 2µfgµij + µijµfg

))

=
1

n2p

( ∑
i<j,j∈Bi\i

∑
f ̸=i<g,g∈Bf\f

(
E(∆ijw

(k,l)
i ∆fgw

(k,l)
f )− µfgµij

))
→ 0,

given that E(Rij |Np = n1) =
n1
np

in the second equality, by Assumption 5 a), and n2p that is dominating

the convergence. Therefore,

E

((
1

np

∑
i<j,j∈Bi\i

np
Np

∆̃ijw
(k,l)
i − E(∆ijw

(k,l)
i )

)2)
= o(1).

Proof of Lemma 1 b).
Let

∆i,niW n =
1

n

∑
i

∆i,niwi

∆i,niΩn =
1

n

∑
i

E∆ijwi,
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where the expectation is taken over the distribution of x and ∆i,niwi =

∆i,niyi

∆i,nixi

∆i,nizi


∆i,niyi

∆i,nixi

∆i,nizi


′

.

Consider the sample counterpart of ∆i,niW n

∆̃i,niW n
1

N

∑
i

∆̃i,niwi,

where ∆̃i,niwi =

∆̃i,niyi

∆̃i,nixi

∆̃i,nizi


∆̃i,niyi

∆̃i,nixi

∆̃i,nizi


′

.

Let ∆i,niW
(k,l)
i be the (k, l) element of the matrix ∆i,niW n, the same apply for the other matrices. By

Assumption 4 for any fixed 0 < ϵ < 1, there is nϵ such that n > nϵ, we have nρn > −log(ϵ). So, for

n > nϵ we have

Pr(N = 0) =

(
1− nρn

n

)n

<

(
1 +

log(ϵ)

n

)n

< elog(ϵ) = ϵ.

This implies that Pr(N = 0) → 0 and

E

(
(∆̃i,niW

(k,l)
i −∆i,niΩ

(k,l)
i )2|N = 0

)
Pr(N = 0) = (∆i,niΩ

(k,l)
i )2Pr(N = 0) → 0

by Assumption 5 a), Holder’s inequality, and assuming that the elements of ∆̃i,niW n = ∆̃i,niΩn = 0

when N = 0. For any integer 1 ≤ n1 ≤ n, observe that

E

(
n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

∣∣∣∣N = n1

)
=

n

n1
E(Riwi −

1

Ni

∑
j

Rjwj |N = n1)− E(∆i,niw
(k,l)
i ) =

(A.4)

n

n1

(
n1
n
E(wi)−

1

Ni

n1
n

∑
j

E(wj)

)
−
(
E(wi)−

1

ni

∑
j

E(wj)

)
→ 0,

given that E(Ri|N = n1) = E(Rj |N = n1) =
n1
n , and Ni → ni by Assumption 1.

Now, to show the convergence in probability of the terms of interest we compute the convergence in

(conditional) quadratic mean. We start with the following term
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E

((
1

n

∑
i

n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)2∣∣∣∣N = n1

)
= (A.5)

=
1

n2

(∑
i

E

(
n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)2∣∣∣∣N = n1

)
+

1

n2

(∑
i

∑
j ̸=i

E

((
n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)(
n

N
∆̃j,njw

(k,l)
j − E(∆j,njw

(k,l)
j )

)∣∣∣∣N = n1

)
.

Let us focus on the first term

1

n2

(∑
i

E

(
n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)2∣∣∣∣N = n1

)
≤ 1

n2

(∑
i

E

(
n

N
∆̃i,niw

(k,l)
i

)2∣∣∣∣N = n1

)
.

Then,

1

n2

(∑
i

E

(
n

N
∆̃i,niw

(k,l)
i

)2∣∣∣∣N = n1

)
= (A.6)

=
1

n2

(∑
i

n2

n21
E(Riw

(k,l)
i − 1

Ni

∑
j

Rjw
(k,l)
j |N = n1)

2

)
=

=
1

n2

(∑
i

n2

n21

(
E(R2

i |N = n1)E(w
(k,l)2
i )

(
1− 2

Ni
+

1

N2
i

)
− 2E(Ri|N = n1)E(w

(k,l)
i )

1

Ni

∑
j ̸=i

E(Rj |N = n1)E(w
(k,l)
j )

+
1

N2
i

∑
j ̸=i

E(Rj |N = n1)E(w
(k,l)2
j )

))
=

=
1

n

(∑
i

1

n1

(
E(w

(k,l)2
i )

(
1− 2

Ni
+

1

N2
i

)
− 2

n1
n
E(w

(k,l)
i )

1

Ni

∑
j ̸=i

E(w
(k,l)
j ) +

1

N2
i

∑
j ̸=i

E(w
(k,l)2
j )

))
,

where we used that E(Ri|N = n1) = E(Rj |N = n1) = E(R2
i |N = n1) =

n1
n . by Assumption 5 a) for

large n, the first term

1

n1

1

n

∑
i

E(w
(k,l)2
i )

(
1− 2

Ni
+

1

N2
i

)
≤ C

n1
,

the second

− 2

n2

∑
i

(
E(w

(k,l)
i )

1

Ni

∑
j ̸=i

E(w
(k,l)
j )

)
≤ O(n−1) = o(1), and

the third
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=
1

n1

1

n

∑
i

(
1

N2
i

∑
j ̸=i

E(w
(k,l)2
j )

)
≤ C

n1
.

Let

Ξ̃n1 =


(

1
n

∑
i

n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)2

if n1 > 0

0 if n1 = 0

and

Ξn1 =

2C/n1 if n1 > 0

0 if n1 = 0

E

((
1

n

∑
i

n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)2∣∣∣∣N > 0

)
Pr(N > 0) = E(Ξ̃N ) ≤ E(ΞN ).

Next, we want to study the behavior of ΞN when n → ∞. Observe that, for any ϵ > 0, Pr(ΞN > ϵ) ≤
Pr(0 < N < 2C/ϵ) < Pr(N < 2C/ϵ) because ΞN can be also zero and the last interval includes the

previous ones. Now for any ϵ > 0 if we apply the Chernoff’s bounds to a sum of bernoully rvs we have:

Pr(N < 2C/ϵ) = Pr(N < (1− δ)nρn) ≤ exp(−δ2nρn/2) → 0,

where δ = (nρn−2C/ϵ)
nρn

. Thus, ΞN = op(1) and given that it is bounded also E(ΞN ) = o(1). For the

second term in (A.5), let us take the first product

=
1

n2

(∑
i

∑
j ̸=i

E

((
n

N
Riw

(k,l)
i − n

N

1

Ni

∑
j

Rjw
(k,l)
j

)(
n

N
Rfw

(k,l)
f − n

N

1

Nf

∑
g

Rgw
(k,l)
g

)∣∣∣∣N = n1

)
=

(A.7)

=
1

n2

(∑
i

∑
j ̸=i

E(w
(k,l)
i w

(k,l)
f )− E(w

(k,l)
i

1

nf

∑
g

w(k,l)
g )−

− E(w
(k,l)
f

1

ni

∑
j

w
(k,l)
j ) + E(

1

nfni

∑
g

w(k,l)
g

∑
j

w
(k,l)
j )

)
≤ C/n2 → 0,

by Assumption 5 a). Similar to Lemma 1 a), this holds for all the terms of the products in (A.5).

Therefore,

E

((
1

n

∑
i

n

N
∆̃i,niw

(k,l)
i − E(∆i,niw

(k,l)
i )

)2)
= o(1).

Lemma 3. Under Assumptions 1- 6, as n → ∞, if
∑

i<j,j∈Bi\iE(xix
′
j) < C, where C is a positive

constant, then
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βc
ND = βc

NW =
∑
i

E(xixi)
−1
∑
i

E(xix
′
i)βi + o(1).

Proof of Lemma 3.
As n→ ∞,

∑
i<j,j∈Bi\i∆ijzi∆ijz

′
i is full rank and λ, exists, so that ∆ijΩ

xz
n = 0, and

βc
ND =

∑
i<j,j∈Bi\i

E(∆ijxi(∆ijx
′
i))

−1
∑

i<j,j∈Bi\i

E(∆ijxi(∆ijyi)).

Moreover, as n get large, by Assumption 6 λ = ϕn , which implies E(∆ijxi) = 0.

Then, given (1) and Assumption 2, we have that

E(∆ijyi) = E(∆ijtiβi) + ∆ijϵi + E(∆ijθi).

Thus,

E(∆ijxi∆ijyi) = E(∆ijxi∆ijtiβi)+E(∆ijxi)∆ijϵi+E(∆ijxi∆ijθi) = E(∆ijxi∆ijxiβi)+E(∆ijxi∆ijθi).

Then,

βc
ND =

(
1

np

∑
i<j,j∈Bi\i

E∆ijxi(∆ijx
′
i)

)−1 1

np

∑
i<j,j∈Bi\i

E(∆ijxi∆ijxiβi)+
1

np

∑
i<j,j∈Bi\i

E(∆ijxi∆ijθi).

W.l.o.g. let us focus on the component-wise convergence of 1
np

∑
i<j,j∈Bi\iE(∆ijxi∆ijθi). Therefore,

1

np

∑
i<j,j∈Bi\i

E(∆ijxi∆ijθi) ≤ max
ij

E(∆ijxi∆ijθi) ≤ max
ij

E|∆ijxi∆ijθi| ≤

max
ij

E(|∆ijxi|)max
ij

E(|∆ijθi|) = O(1)max
ij

E|(∆ijθi)| = O(1)o(1) = o(1),

by Assumptions 2 and 5 a) and

βc
ND =

(
1

np

∑
i<j,j∈Bi\i

E∆ijxi(∆ijx
′
i)

)−1 1

np

∑
i<j,j∈Bi\i

E(∆ijxi(xiβi − xjβj)) + o(1).

Now, let us focus on 1
np

∑
i<j,j∈Bi\iE(∆ijxi(xiβi − xjβj)). We have,

1

np

∑
i<j,j∈Bi\i

E(∆ijxi(xiβi − xjβj)) =

=
1

np

∑
i

(
(ni − 1)E(xix

′
iβi) +

∑
j∈Bi

E(xjx
′
jβj)

)
− 1

np

∑
i<j,j∈Bi\i

(
E(xix

′
jβj)− E(xjx

′
iβi)

)
.

Given Assumption 5, the cross moments terms are bounded. Also 1
np

∑
j∈Bi

E(xjx
′
jβj) → 0 given that
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ni <∞, by Assumption 1. Finally,

1∑
i(ni − 1)

∑
i

(ni − 1)E(xix
′
i)βi −

1

np

∑
i<j,j∈Bi\i

E(xix
′
j)(βi + βj) →

→ 1

n

∑
i

E(xix
′
i)βi + o(1).

We obtain our result by employing the same strategy to the denominator of βc
ND. The same arguments

can be applied to βc
NW .

Lemma 4. Let {Vni, 0 ≤ i ≤ Dn, n ≥ 1} be a real valued random field that is L2−NED on {θi,n, i ∈
Dn, n ≥ 1}, with the scaling factors νin and the NED coefficients ψ(s) of size −ν, µnij = E(∆ijVni),
and σ2n = V ar(

∑
i<j∈Bi\i

Rij√
ρ2n
(∆ijVni − µij)). Suppose that Rij , . . . Rnp are independent of ∆ijVni,

Assumption 1, 4, and 10 hold, supn,i∈Dn
E|(Vni − µi)|2+δ < ∞, and supn,i∈Dn

νin < ∞ for some
δ > 0, infn n−1

p σ2n > 0, ∑
i<j,j∈Bi\i

µnij = 0,

1

np

∑
i<j,j∈Bi\i

V ar(∆ijVni) → σ2,

1

np

∑
i<j,j∈Bi\i

µ2ij → κ2, and

1

np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

cov(Vij , Vkl) → σijkl.

Furthermore, there exists a constan C such that,∑
i<j∈Bi\i

∑
k ̸=i<l∈Bk\k

E

(
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)
E

(
∆klVk − µkl

∣∣∣∣Fkn(s)

)
≥ C

where σ2 + ρ2σijkl + (1− ρ2)κ2 > 0 and np denotes the number of pairs in the population. Then,

1√
Np

∑
i<j,j∈Bi\i

(
Rnij∆ijVi

)
d→N (0, σ2 + 2σijkl + (1− ρ2)κ2),

where Np is the number of sampled pairs.

Proof. To easy the notation let us drop the subscript n from the array. As in Abadie et al. (2020) we have

that given d, Np ∼ Bin(np, ρ
2
n) with E(Np) = npρ

2
n.

V ar

(
Np

ρ2nnp

)
=
ρ2n(1− ρ2n)np

n2pρ
4
n

→ 0.

Then by the continuous mapping theorem, we have



41

(
npρ

2
n

Np

)1/2
p→ 1.

As a consequence, it suffices to prove that

1
√
np

∑
i<j,j∈Bi\i

(
Rnij∆ijVi√

ρ2n

)
d→N (0, σ2 + ρ2σijkl + (1− ρ2n)κ

2).

Now define

s2n =
1

np
V ar

 ∑
i<j,j∈Bi\i

(Rij∆ijVi − ρ2nµij)

 .

Observe that,

E

(
Rij∆ijVi − ρ2nµij

sn
√
npρ2n

)
= 0,

for n large enough and s2n > 0. Let us now focus on the variance,

V ar(Rij∆ijVi − ρ2nµij).

Focusing on the variance of the first demeaned term we have

V ar(Rij∆ijVi−ρ2nµij) = V ar(Rij∆ijVi) = ρ2nE(∆ijV
2
i )−ρnµ2ij = ρ2n(V ar(∆ijVi)+(1−ρ2n)µ2ij).

We need now to compute the V ar
(∑

i<j,j∈Bi\i(Rij∆ijVi − (ρ2nµij))
)
. This is equal to the sum of the

variances plus an extra covariance term that is equal to the covariances of the pairs which have one unit

in common. Formally,

V ar

 ∑
i<j,j∈Bi\i

(Rij∆ijVi − (ρ2nµij))

 =

=
∑

i<j,j∈Bi\i

(
ρ2n(V ar(∆ijVi) + (1− ρ2n)µ

2
ij)
)

+ ρ4n
∑

i<j,j∈Bi\i

∑
(k ̸=i)<l∈Bd

k\k

cov(∆ijVi,∆klVk).

Let us now define qni = ∆ijVi − µij . From the NED definition,

∥qin − E(qin|Fin(s))∥p ≤

∥(Vi − µi)− (Vj − µj)∥p + ∥E((Vi − µi)|Fin(s))− E((Vj − µj)|Fjn(s))∥p ≤

νinψ(s) + νjnψ(s) ≤ νijn2ψ(s),
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where νijn = max{νi, νj}. Thus, qin is NED on θi of the same size, see also Theorem 17.8 pag. 267

in Davidson (1994). Given that θi and qni have uniformly bounded moments, we can set νin = cin = 1

(Jenish and Prucha, 2012). First, observe that given n, Rij is i.i.d. and so is also m-dependent (See

Defintion 3 and Lemma B.4 in Xu and Wooldridge, 2022). We check conditions a)-d) in Theorem 1. Let

us start with a)

sup
n,i∈Dn

E(|qni/cin|)2+δ <∞

for some δ > 0, where cin > 0 is a sequence of constants. Setting, cin = 1, allows us to satisfy the

requirement by Assumption. For condition b), we need that for any fixed s > 0, there exist a positive

constatnt C such that for any n and every nonempty set K ⊆ Dn, E(
∑

i∈K
Ri√
ρn
E(qni/jn|F(s)))2 ≥

C
∑

i∈K E( Ri√
ρn
E(qni/jn|F(s)))2, where jn = maxi∈Dn{cin, νin}. Thus, given jn = 1,

E

( ∑
i<j∈Bi\i

Rij√
ρ2n
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

))2

≥ CE
∑

i<j∈Bi\i

(
Rij√
ρ2n
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

))2

.

Focusing on the LHS of the inequality, we have

E

( ∑
i<j∈Bi\i

Rij√
ρ2n
E

(
∆ijVi − µij

jn

∣∣∣∣Fin(s)

))2

= (A.8)

E(R2
ij)

ρ2n

∑
i<j∈Bi\i

E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)2

+

+
∑

i<j∈Bi\i

∑
k ̸=i<l∈Bk\k

E

(
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)
E

(
∆klVk − µkl

∣∣∣∣Fkn(s)

))
=

∑
i<j∈Bi\i

E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)2

+
∑

i<j∈Bi\i

∑
k ̸=i<l∈Bk\k

E

(
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)
E

(
∆klVk − µkl

∣∣∣∣Fkn(s)

))
.

The RHS can be written as

CE
∑

i<j∈Bi\i

(
Rij√
ρ2n
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

))2

= (A.9)

E(R2
ij)

ρ2n

∑
i<j∈Bi\i

E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)2

=

∑
i<j∈Bi\i

E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)2

.

Thus, using (A.8)-(A.9), we have

∑
i<j∈Bi\i

∑
k ̸=i<l∈Bk\k

E

(
E

(
∆ijVi − µij

∣∣∣∣Fin(s)

)
E

(
∆klVk − µkl

∣∣∣∣Fkn(s)

))
≥ C.

This is sufficient for condition b) to hold within our framework. While the NED coefficients ψ(s) are
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assumed to have a magnitude of size −ν (d)), condition e) (stating that the NED scaling factors must

satisfy supn,i∈Dn
c−1
in νin ≤ C <∞) is trivially satisfied.

Therefore, ∑
i<j,j∈Bi\i

(
Rij∆ijVi − µijρ

2
n

(sn
√
ρ2nnp)

)
d→N (0, 1),

given that sn√
σ2+ρ2σijkl+(1−ρ2)κ2)

→ 1.

Lemma 5. Under Assumptions, 1-8, and Assumption 12 a) in Appendix A.2. Let Bu = Behw −Bcond,
and ∆̃ij ε̃i = ∆̃ijyi − ∆̃ijxiβ

cs − ∆̃ijziγ
cs. Then,∑

i<j,j∈Bi\i

1√
Np

∆̃ijxi∆̃ijεi
d→N (0,Bcond + ρ2Bcov + (1− ρ2)Bu)

Proof. Let us start with a). We first study the convergence of this term

1
√
np

∑
i<j,j∈Bi\i

E

(
∆ijxi∆ijθi

)
.

Without loss of generality, let us focus on the component wise convergence. We have that

1
√
np

∑
i<j,j∈Bi\i

E(∆ijxi∆ijθi) ≤
√
npmax

ij
E(∆ijxi∆ijθi) ≤

√
npmax

ij
E|∆ijxi∆ijθi| ≤

√
npmax

ij
E(|∆ijxi|)max

ij
E(|∆ijθi|) = O(1)

√
npmax

ij
E|(∆ijθi)| = O(1)o(1) = o(1),

where the second inequality follows by triangular inequality, the third inequality by Cauchy-Schwartz

inequality, the first equality by Assumption 5 a) and Holder’s inequality, and the second equality by

Assumption 7. Consider ∆ijVni = a′∆ijxi∆ijεi. Let us verify the conditions of Lemma 4. We start

with 1
n

∑
iE(|Vni|2+δ) is bounded by a positive constant for some δ > 0.

1

np

∑
i<j,j∈Bi\i

E

(∣∣∣∣∣∣∣∣∆ijxi∆ijεi

∣∣∣∣∣∣∣∣2+δ)
≤ ||a||2+δ

np

∑
i<j,j∈Bi\i

E

(
||xi||2+δ(|yi|+ ||xi||||β||+ ||zi||||γ||)2+δ

)
+

E

(
||xj ||2+δ(|yj |+ ||xj ||||β||+ ||zj ||||γ||)2+δ

)
≤ C,

by Minkowski’s inequality and Assumption 5 a). Furthermore,∑
i<j,j∈Bi\i

µnij = a′
∑

i<j,j∈Bi\i

E(∆ijxi∆ijεi) = 0,

by defining the coefficient βcND as orthogonality condition.
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Let a ̸= 0. We have that,

1

np
V ar

( ∑
i<j,j∈Bi\i

∆ijVi

)
=

1

np
a′V ar

( ∑
i<j,j∈Bi\i

∆ijxi∆ijεi

)
a→ a′(Bcond +Bcov)a,

1

np

∑
i<j,j∈Bi\i

µ2ij =
1

np
a′
( ∑

i<j,j∈Bi\i

E

(
∆ijxi∆ijεi

)
E

(
∆ijxi∆ijεi

)′)
a→ a′(Bu)a.

This implies

a′
( ∑

i<j,j∈Bi\i

1√
Np

∆̃ijxi∆̃ijεi

)
d→N (0, a′(Bcond + ρ2Bcov + (1− ρ2)Bu)a).

Using the Cramer-Wold device, the result follows

∑
i<j,j∈Bi\i

1√
Np

∆̃ijxi∆̃ijεi
d→N (0,Bcond + ρ2Bcov + (1− ρ2)Bu).

The proof of b) follows the same arguments.

Proof of Proposition 1 .
To prove a),

We can write the ND estimator as

(
β̂ND

γ̂ND

)
=

(
βc
ND

γc
ND

)
+

( ∑
i<j,j∈Bi\i

(
∆̃ijxi∆̃ijx

′
i ∆̃ijxi∆̃ijz

′
i

∆̃ijzi∆̃ijx
′
i ∆̃ijzi∆̃ijz

′
i

))−1 ∑
i<j,j∈Bi\i

(
∆̃ijxi∆̃ij(εi + θi)

∆̃ijzi∆̃ij(εi + θi).

)

Thus as n→ ∞ and by Lemma 5 with Assumption 7 ,

√
Np

(
β̂ND − βc

ND

γ̂ND − γc
ND

)
=

(
1

Np

∑
i<j,j∈Bi\i

(
∆̃ijxi∆̃ijx

′
i ∆̃ijxi∆̃ijz

′
i

∆̃ijzi∆̃ijx
′
i ∆̃ijzi∆̃ijz

′
i

))−1 1√
Np

∑
i<j,j∈Bi\i

(
∆̃ijxi∆̃ijεi

∆̃ijzi∆̃ijεi.

)
+op(1)

=

(
∆ijΩ

xx
n ∆ijΩ

xz
n

∆ijΩ
zx
n ∆ijΩ

zz
n

)−1
1√
Np

∑
i<j,j∈Bi\i

(
∆̃ijxi∆̃ijεi

∆̃ijzi∆̃ijεi

)
+ rn,

where

rn =

[(
∆̃ijW

xx
n ∆̃ijW

xz
n

∆̃ijW
zx
n ∆̃ijW

zz
n

)−1

−

(
∆ijΩ

xx
n ∆ijΩ

xz
n

∆ijΩ
zx
n ∆ijΩ

zz
n

)−1 ]
1√
Np

∑
i<j,j∈Bi\i

(
∆̃ijxi∆̃ijεi

∆̃ijzi∆̃ijεi

)
+op(1).
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Let us focus on
1√
Np

∑
i<j,j∈Bi\i

∆̃ijzi∆̃ijεi.

Rewrite the term as √
npρ2n
Np

n−1/2
p

∑
i<j,j∈Bi\i

1√
ρ2n

∆̃ijzi∆̃ijεi.

As shown in Lemma 4,
√

npρ2n
Np

p→ 1 and

E

( ∑
i<j,j∈Bi\i

∆̃ijzi∆̃ijεi

)
=

∑
i<j,j∈Bi\i

∆̃ijziE(∆̃ijεi) = 0.

Now if we show that the element-wise variance is bounded, then this implies that

1√
Np

∑
i<j,j∈Bi\i

∆̃ijzi∆̃ijεi = Op(1),

by Chebyshev’s inequality. Thus,

V ar

(
n−1/2
p

∑
i<j,j∈Bi\i

1√
ρ2n

∆̃ijzi∆̃ijεi

)
=

n−1
p

∑
i<j,j∈Bi\i

(
V ar(∆ijzi∆ijεi) + (1− ρ2n)(E(∆ijzi∆ijεi))

2
)

+ ρ2n
∑

i<j,j∈Bi\i

∑
(k ̸=i)<l∈Bd

k\k

cov(∆ijzi∆ijεi,∆klzk∆klεk).

Let us focus on the three terms separately,

n−1
p

∑
i<j,j∈Bi\i

(V ar(∆ijzi∆ijεi) = n−1
p

∑
i<j,j∈Bi\i

∆ijz
2
i V ar(∆ijεi) ≤ n−1

p

∑
i<j,j∈Bi\i

∆ijz
2
iE(∆ijε

2
i ),

n−1
p (1− ρ2n)(E(∆ijzi∆ijεi))

2 = (1− ρn)n
−1
p

∑
i<j,j∈Bi\i

∆ijz
2
i (E(∆ijεi))

2, and

n−1ρ2n
∑

i<j,j∈Bi\i

∑
(k ̸=i)<l∈Bd

k\k

cov(∆ijzi∆ijεi,∆klzk∆klεk)

≤ n−1
∑

i<j,j∈Bi\i

∑
(k ̸=i)<l∈Bd

k\k

∆ijzi∆klzk(E(∆ijεizk∆klεk)),

which are bounded by Assumption 5.

Therefore given that ∆ijΩ
xz
n = 0 and 1√

Np

∑
i<j,j∈Bi\i ∆̃ijzi∆̃ijεi = Op(1), we have
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√
Np(β̂ND − βc

ND) = (∆ijΩ
xx
n )−1 +

1√
Np

∑
i<j,j∈Bi\i

∆̃ijxi∆̃ijεi + op(1).

The result follows by Lemma 5 and Slutsky’s theorem.

Lemma 6. Let {Vni, 0 ≤ i ≤ Dn, , n ≥ 1} be a real valued random field that is L2−NED on {θi,n, i ∈
Dn, n ≥ 1}, with the scaling factors νin and the NED coefficients ψ(s) of size −ν, µni = E(Vni), and
σ2n = V ar(

∑
i

1√
ρn
(RiVi− 1

ni

∑
j RjVj−ρn(µi− 1

ni

∑
j µj)). Suppose thatRi, . . . Rn are independent

of ∆i,niVni, Assumption 1, 4, and 10 hold, supn,i∈Dn
E|(Vni − µi)|2+δ < ∞, supn,i∈Dn

νin < ∞ for
some δ > 0, infn n−1σ2n > 0, and∑

i µni −
1
ni

∑
j µj = 0,

1
n

∑n
i=1 V ar(Vni)

(
1− 2

ni

)
→ σ2, 1

n

∑n
i=1 µ

2
i

(
1− 2

ni

)
→ κ2,

1
n

∑n
i=1

1
n2
i

∑
j∈Bi

V ar(Vnj) → σ2neigh,
1
n

∑n
i=1

1
n2
i

∑
j∈Bi

µ2j → κ2neigh,

1
n

∑
i

1
n2
i

∑
j,k∈Bi

cov(VjVk) → σBi ,
1
n

∑
i

1
ni

∑
j ̸=i∈Bi

cov(Vi, Vj) → σi,Bi ,

1
n

∑
i

∑
k ̸=i cov

((
Vi − 1

ni

∑
j∈Bi

Vj

)
,

(
Vk − 1

nk

∑
l∈Bk

Vl

))
→ σ∆Bi,Bk

,

Furthermore, there exist a constant C such that∑
i

∑
k ̸=i

E

(
E

(
Vi − µi

∣∣∣∣Fin(s)

)
E

(
Vk − µk

∣∣∣∣Fkn(s)

))
≥ C,

∑
i

∑
k ̸=i

E

(
E

(
1

ni

∑
j∈Bi

(Vj − µj)

∣∣∣∣Fin(s)

)
E

(
1

nk

∑
l∈Bk

(Vl − µl)

∣∣∣∣Fkn(s)

))
≥ C,

where (σ2 + σ2neigh + (1− ρ)(κ2 + κ2neigh) + ρ(σBi − σi,Bi + σ∆Bi,Bk
)) > 0. Then,

1√
N

∑
i

(
RniVi −

1

Ni

∑
j

RnjVj

)
d→

N
(
0, (σ2 + σ2neigh + (1− ρ)(κ2 + κ2neigh) + ρσcov)

)
.

where σcov = σBi − σi,Bi + σ∆Bi,Bk
, and N is the number of sampled units.

Proof. To easy the notation let us drop the subscript n from the array. As in Abadie et al. (2020) we have

that N ∼ Bin(n, ρn).

E

[
N

nρn

]
= 1, V ar

(
N

nρn

)
=
nρn(1− ρn)

(nρn)2
→ 0.

Then by the continuous mapping theorem, we have
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(
nρn
N

)1/2
p→ 1.

As a consequence, and given that Ni → ni by Assumption 1, it suffices to prove

1√
n

∑
i

(
RiVi − 1

ni

∑
j RjVj

√
ρn

)
d→

N
(
0, (σ2 + σ2neigh + (1− ρ)(κ2 + κ2neigh) + ρσcov)

)
,

where σ2cov = σBi − σi,Bi + σ∆Bi,Bk
. Now define

s2n =
1

n
V ar

∑
i

(RiVi − ρnµi −
1

Ni

∑
j

RjVj + ρn
1

ni

∑
j

µj)

 .

Observe that,

E

(
RiVi − 1

ni

∑
j RjVj − ρn(µi − 1

ni

∑
j µj)

sn
√
nρn

)
= 0,

for n large enough and s2n > 0. Let us now focus on the variance,

V ar(RiVi −
1

ni

∑
j

RjVj − ρn(µi −
1

ni

∑
j

µj)).

Let us fix i and focus on the variance of 1
ni

∑
j∈Bi

RjVj ,

V ar

(
1

ni

∑
j∈Bi

RjVj−
1

ni

∑
j∈Bi

ρnµj

)
= ρn

(
1

n2i

∑
j∈Bi

(
V ar(Vj)+(1−ρn)µ2j

)
+

1

n2i
ρn
∑
j∈Bi

∑
k ̸=j∈Bi

cov(VjVk)

)
.
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Thus,

V ar(RiVi −
1

ni

∑
j∈Bi

RjVj − ρn(µi −
1

ni

∑
j∈Bi

µj)) = (A.10)

= ρn(V ar(Vi) + (1− ρn)µ
2
i ) + ρn

1

n2i

(∑
j∈Bi

(
V ar(Vj) + (1− ρn)µ

2
j

)
+ ρn

∑
j∈Bi

∑
k ̸=j∈Bi

cov(VjVk)

)
− 2cov(RiVi,

1

ni

∑
j∈Bi

RjVj)

V ar(RiVi −
1

ni

∑
j∈Bi

RjVj − ρn(µi −
1

ni

∑
j∈Bi

µj)) =

= ρn(V ar(Vi) + (1− ρn)µ
2
i )

(
1− 2

ni

)
+ ρn

1

n2i

(∑
j∈Bi

(
V ar(Vj) + (1− ρn)µ

2
j

)
+ ρn

∑
j∈Bi

∑
k ̸=j∈Bi

cov(VjVk)

)
− 2

1

ni
ρ2n

∑
j ̸=i∈Bi

cov(Vi, Vj)

We need now to compute the

V ar

∑
i

(
RniVi −

1

ni

∑
j∈Bi

RjVj − ρn(µi −
1

ni

∑
j∈Bi

µj)

) .

This is equal to the sum of the variances plus two times an extra covariance term that consider the spatial

dependence induced by the mixing process θ. Formally,

∑
i

∑
k ̸=i

cov

(RiVi −
1

ni

∑
j∈Bi

RjVj

)
·
(
RkVk −

1

nk

∑
l∈Bk

RlVl

) =

∑
i

∑
k ̸=i

(
ρ2ncov(Vi, Vk)− ρ2n

1

nk

∑
l∈Bk

cov(Vi, Vl)− ρ2n
1

ni

∑
j∈Bi

cov(Vk, Vj) +
1

ni

1

nk
ρ2n
∑
j∈Bi

∑
l∈Bk

cov(Vl, Vj)

)
∑
i

∑
k ̸=i

ρ2n

(
cov(Vi, Vk)−

1

nk

∑
l∈Bk

cov(Vi, Vl)−
1

ni

∑
j∈Bi

cov(Vk, Vj) +
1

ni

1

nk

∑
j∈Bi

∑
l∈Bk

cov(Vl, Vj)

)
=

ρ2n
∑
i

∑
k ̸=i

cov

(Vi − 1

ni

∑
j∈Bi

Vj

)
,

(
Vk −

1

nk

∑
l∈Bk

Vl

) .
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So plugin in this extra term into (A.10) we have

V ar

∑
i

RniVi −
1

ni

∑
j

RjVj − ρn(µi −
1

ni

∑
j

µj)

 =

=
∑
i

ρn

[
(V ar(Vi) + (1− ρn)µ

2
i )

(
1− 2

ni

)
+

+
1

n2i

(∑
j∈Bi

(
V ar(Vj) + (1− ρn)µ

2
j

)
+ ρn

∑
j∈Bi

∑
k ̸=j∈Bi

cov(VjVk)

)
− 1

ni
ρn

∑
j ̸=i∈Bi

cov(Vi, Vj)+

+ ρn
∑
i

∑
k ̸=i

cov

((
Vi −

1

ni

∑
j∈Bi

Vj

)
,

(
Vk −

1

nk

∑
l∈Bk

Vl

))]
.

Let us define qni =
∑

i Vi −
1
ni

∑
j Vj − (µi − 1

ni

∑
j µj). From the NED definition,

∥qin − E(qin|Fin(s))∥p ≤

∥(Vi − µi)−
1

ni

∑
j∈Bi

(Vj − µj)∥p + ∥E((Vi − µi)|Fin(s))− E((
1

ni

∑
j∈Bi

(Vj − µj))|Fjn(s))∥p ≤

νinψ(s) + νj∈Biψ(s) ≤ νi,j∈Bi2ψ(s),

where νi,j∈Bi = max{νi, ...νni}, ∀j ∈ Bi. Thus, qin is NED on θi of the same size, see also Theorem

17.8 pag. 267 in Davidson (1994). To directly apply Theorem 1 it is convenient to decompose qni in

two components: the “ individual" and “ neighborhood" ones. Let us start with the the “ individual"

component, q1ni = Ri(Vi − µi). Given that θi and q1ni have uniformly bounded moments, we can set

νin = cin = 1 (Jenish and Prucha, 2012). First, observe that given n, Rij is i.i.d. and so is also m-

dependent (See Defintion 3 and Lemma B.4 in Xu and Wooldridge, 2022). We check conditions a)-d) in

Theorem 1. Let us start with a)

sup
n,i∈Dn

E(|q1ni/cin|)2+δ <∞

for some δ > 0, where cin > 0 is a sequence of constants. Setting, cin = 1, allows us to satisfy the

requirement by Assumption.

For condition b), we need that for any fixed s > 0, there exist a positive constantC such that for any n and

every nonempty set K ⊆ Dn, E(
∑

i∈K
Ri√
ρn
E(q1ni/jn|F(s)))2 ≥ C

∑
i∈K E( Ri√

ρn
E(q1ni/jn|F(s)))2,

where jn = maxi∈Dn{cin, ν1ni}. Thus, given that jn = 1, let us start with the first part of

E

(∑
i

Ri√
ρn
E

(
Vi − µi

∣∣∣∣Fin(s)

))2

≥ CE
∑
i

(
Ri√
ρn
E

(
Vi − µi

∣∣∣∣Fin(s)

))2

.
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Focusing on the LHS of the inequality, we have

E

(∑
i

Ri√
ρn
E

(
Vi − µi

∣∣∣∣Fin(s)

))2

= (A.11)

E(R2
i )

ρn

∑
i

E

(
Vi − µi

∣∣∣∣Fin(s)

)2

+
∑
i

∑
k ̸=i

E

(
E

(
Vi − µi

∣∣∣∣Fin(s)

)
E

(
Vk − µk

∣∣∣∣Fkn(s)

))
=

∑
i

E

(
Vi − µi

∣∣∣∣Fin(s)

)2

+
∑
i

∑
k ̸=i

E

(
E

(
Vi − µi

∣∣∣∣Fin(s)

)
E

(
Vk − µk

∣∣∣∣Fkn(s)

))
.

The RHS can be written as

CE
∑
i

(
Ri√
ρn
E

(
Vi − µi

∣∣∣∣Fin(s)

))2

= (A.12)

E(R2
i )

ρn

∑
i

E

(
vVi − µi

∣∣∣∣Fin(s)

)2

=

∑
i

E

(
Vi − µi

∣∣∣∣Fin(s)

)2

.

Thus, using (A.11)-(A.12), we have

∑
i

∑
k ̸=i

E

(
E

(
Vi − µi

∣∣∣∣Fin(s)

)
E

(
Vk − µk

∣∣∣∣Fkn(s)

))
≥ C.

This is sufficient for condition b) to hold within our framework. While the NED coefficients ψ(s) are

assumed to have a magnitude of size −ν (d)), condition e) (stating that the NED scaling factors must

satisfy supn,i∈Dn
c−1
1niν1ni ≤ C < ∞) is trivially satisfied. Let us define Q1n =

∑
i

Ri√
ρn
q1in and

σ1n = V ar(Q1n). By Theorem 1, we have Q1nσ
−1
1n

d→N(0, 1).

Now, let us apply Theorem 1 once again to the “ neighborhood" component. By setting q2ni =
1
ni

∑
j∈Bi

Rj(Vj − µj), and c2in = ν2in = 1. Conditions a), c), and e) hold following the same

reasoning as before for the “ individual" part. Observe that d) holds with the same size because the

process
∑

j∈Bi
Vj for each i has size equal to −minj∈Bi(νjn).However for b) to hold we need a different

sufficient condition,

∑
i

∑
k ̸=i

E

(
E

(
1

ni

∑
j∈Bi

(Vj − µj)

∣∣∣∣Fin(s)

)
E

(
1

nk

∑
l∈Bk

(Vl − µl)

∣∣∣∣Fkn(s)

))
≥ C.

Let us defineQ2n =
∑

i

∑
j∈Bi

1
ni

Rj√
nρn

q2in and σ2n = V ar(Q2n). By Theorem 1, we haveQ2nσ
−1
2n

d→N(0, 1).

Thus, both the “ individual” and “ neighborhood” components are asymptotically normally distributed.

Therefore, ∑
i

(
RniVi − 1

ni

∑
j RjVj − ρn(µi − 1

ni

∑
j µj)

(sn
√
ρnn)

)
d→N (0, 1),
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given that sn√
σ2+σ2

neigh+(1−ρ)(κ2+κ2
neigh)+ρσcov

→ 1, and
∑

i µni −
1
ni

∑
j∈Bi

µj = 0.

Lemma 7. Under Assumptions, 1- 7, 9, and Assumption 12 b) in Appendix A.2. Let Bu
NW = Behw

NW −
Bcond

NW , and Bcov
NW = BBi

NW −BiBi
NW +B∆BiBk

NW . Then,

∑
i

1√
N

∆̃i,nixi∆̃i,niεi
d→

N
(
0, (Bcond

ND +Bneigh
NW + (1− ρ)(Bu

NW +Buneigh
NW ) + ρBcov

NW )

)
.

Proof. We first study the convergence of this term

1√
n

∑
i

E

(
∆i,nixi∆i,niθi

)
.

Without loss of generality, let us focus on the component-wise convergence. We have that

1√
n

∑
i

E(∆i,nixi∆i,niθi) ≤
√
nmax

i
E(∆i,nixi∆i,niθi) ≤

√
nmax

i
E|∆i,nixi∆i,niθi| ≤

√
nmax

i
E(|∆ijxi|)max

i
E(|∆ijθi|) = O(1)

√
nmax

i
E|(∆ijθi)| = O(1)o(1) = o(1),

where the first inequality follows by triangular inequality, the third inequality by Cauchy-Schwartz in-

equality, the first equality by Assumption 5 a) and Holder’s inequality, and the second equality by As-

sumption 7. Consider ∆i,niVni = a′∆i,nixi∆i,niεi. Let us verify the conditions of Lemma 4. We start

with 1
n

∑
iE(|Vni|2+δ) is bounded by a positive constant for some δ > 0.

1

n

∑
i

E

(∣∣∣∣∣∣∣∣∆i,nixi∆i,niεi

∣∣∣∣∣∣∣∣2+δ)
≤ ||a||2+δ

n

∑
i

E

(
||xi||2+δ(|yi|+ ||xi||||β||+ ||zi||||γ||)2+δ

)
+

||a||2+δ

ni

∑
j

E

(
||xj ||2+δ(|yj |+ ||xj ||||β||+ ||zj ||||γ||)2+δ

)
≤ C,

by Minkowski’s inequality and Assumption 5 a). Furthermore,

∑
i

µni −
1

ni

∑
j

µj = 0 = a′
∑
i

E(∆i,nixi∆i,niεi) = 0,

by defining the coefficient βcNW as orthogonality condition. Let
1
n

∑n
i=1 V ar(Vni)

(
1− 2

ni

)
= a′

(
1
n

∑
i V ar(xiεi)

(
1− 2

ni

))
a→ a′Bcond

NW a,

1
n

∑n
i=1 µ

2
i

(
1− 2

ni

)
= a′

(
1
n

∑
iE(xiεi)E(xiεi)

′
(
1− 2

ni

))
a→ a′Bu

NWa,
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1
n

∑n
i=1

1
ni

∑
j∈Bi

V ar(Vnj) = a′
(

1
n

∑
i

1
n2
i

∑
j∈Bi

V ar(xjεj)

)
a→ a′Bneigh

NW a,

1
n

∑n
i=1

1
ni

∑
j∈Bi

µ2j = a′
(

1
n

∑n
i=1

1
n2
i

∑
j∈Bi

E(xjεj)E(xjεj)
′
)
a→ a′Buneigh

NW a,

1
n

∑
i

1
n2
i

∑
j∈Bi

∑
k ̸=j∈Bi

cov(VjVk) = a′
(

1
n

∑
i

1
n2
i

∑
j∈Bi

∑
k ̸=j∈Bi

cov

(
(xjεj), (xkεk)

))
a→ a′BBi

NWa,

1
n

∑
i

1
n2
i

∑
j ̸=i∈Bi

cov(Vi, Vj) = a′
(

1
n

∑
i

1
ni

∑
j ̸=i∈Bi

cov

(
(xiεi), (xjεj)

))
a→ a′Bi,Bi

NWa,

1
n

∑
i

∑
k ̸=i cov

(
∆i,niVi,∆k,nk

Vk

)
= a′

(
1
n

∑
i

∑
k ̸=i cov

(
(∆i,nixi,∆i,niεi)(∆k,nk

xk,∆k,nk
εk)

))
a→

a′B∆BiBk
NW a,

and Bcov
NW = BBi

NW −BiBi
NW +B∆BiBk

NW . By Lemma 6, this implies

a′
1√
N

∑
i

∆̃i,nixi∆̃i,niεi
d→

N
(
0, a′

(
Bcond

ND +Bneigh
NW + (1− ρ)(Bu

NW +Buneigh
NW ) + ρBcov

NW

)
a

)
.

Using the Cramer-Wold device, the result follows

1√
N

∑
i

∆̃i,nixi∆̃i,niεi
d→

N
(
0, (Bcond

ND +Bneigh
NW + (1− ρ)(Bu

NW +Buneigh
NW ) + ρBcov

NW )

)
.

Proof of Proposition 2 .
We can write the NW estimator as

(
β̂NW

γ̂NW

)
=

(
βc
NW

γc
NW

)
+

(∑
i

(
∆̃ijxi∆̃i,nix

′
i ∆̃i,nixi∆̃i,niz

′
i

∆̃i,nizi∆̃i,nix
′
i ∆̃i,nizi∆̃i,niz

′
i

))−1∑
i

(
∆̃i,nixi∆̃i,ni(εi + θi)

∆̃i,nizi∆̃i,ni(εi + θi).

)

Thus as n→ ∞ and by Lemma 5 with Assumption 7 ,

√
Np

(
β̂NW − βc

NW

γ̂NW − γc
NW

)
=

(
1

N

∑
i

(
∆̃i,nixi∆̃i,nix

′
i ∆̃i,nixi∆̃i,niz

′
i

∆̃i,nizi∆̃i,nix
′
i ∆̃i,nizi∆̃i,niz

′
i

))−1 1√
N

∑
i

(
∆̃i,nixi∆̃i,niεi

∆̃i,nizi∆̃i,niεi.

)
+op(1)

=

(
∆i,niΩ

xx
n ∆i,niΩ

xz
n

∆i,niΩ
zx
n ∆i,niΩ

zz
n

)−1
1√
N

∑
i

(
∆̃i,nixi∆̃i,niεi

∆̃i,nizi∆̃i,niεi

)
+ rn,
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where

rn =

[(
∆̃i,niW

xx
n ∆̃i,niW

xz
n

∆̃i,niW
zx
n ∆̃i,niW

zz
n

)−1

−

(
∆i,niΩ

xx
n ∆i,niΩ

xz
n

∆i,niΩ
zx
n ∆i,niΩ

zz
n

)−1 ]
1√
N

∑
i

(
∆̃i,nixi∆̃i,niεi

∆̃i,nizi∆̃i,niεi

)
+op(1).

Let us focus on
1√
N

∑
i

∆̃i,nizi∆̃i,niεi.

Rewrite the term as √
nρn
N

n−1/2
∑
i

1
√
ρn

∆̃i,nizi∆̃i,niεi.

As shown in Lemma 4,
√

npρ2n
N

p→ 1 and

E(
∑
i

∆̃i,nizi∆̃i,niεi) =
∑
i

∆̃i,niziE(∆̃i,niεi) = 0.

Now if we show that the element-wise variance is bounded, then this implies that

1√
N

∑
i

∆̃i,nizi∆̃i,niεi = Op(1),

by Chebyshev’s inequality. Thus,

V ar

(
n−1/2

∑
i

1
√
ρn

∆̃i,nizi∆̃i,niεi

)
= n−1V ar

(∑
i

1
√
ρn

∆̃i,nizi∆̃i,niεi

)
= (A.13)

=
∑
i

[
(V ar(ziεi) + (1− ρn)(E(ziεi))

2)

(
1− 2

ni

)
+

+
1

n2i

(∑
j∈Bi

(
V ar(zjεj) + (1− ρn)(E(zjεj))

2

)
+ ρn

∑
j,k∈Bi

cov(zjεj , zkεk)

)
− 1

ni
ρn

∑
j ̸=i∈Bi

cov(ziεi, zjεj)+

+ ρn
∑
i

∑
k ̸=i

cov

((
zi εi −

1

ni

∑
j∈Bi

zjεj

)
,

(
zkεk −

1

nk

∑
l∈Bk

zlεl

))]
.

The first terms,

n−1
∑
i

V ar(ziεi) = n−1
∑
i

z2i V ar(εi) ≤ n−1
∑
i

z2iE(ε2i ),

(1− ρn)n
−1
∑
i

(E(ziεi))
2 = (1− ρn)n

−1
∑
i

z2i (E(εi))
2, and

n−1ρn
∑

j,k∈Bi

cov(zjεj , zkεk) ≤ n−1
∑

j,k∈Bi

zjzk(E(zjεjzkεk)),

are bounded by Assumption 5. The same can be applied to the other terms. Therefore given that
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∆i,niΩ
xz
n = 0 and 1√

N

∑
i ∆̃i,nizi∆̃i,niεi = Op(1), we have

√
N(β̂NW − βc

NW ) = (∆i,niΩ
xx
n )−1 +

1√
N

∑
i

∆̃i,nixi∆̃i,niεi + op(1).

The result follows by Lemma 7 and Slutsky’s theorem.

Proof of Lemma 2 .
First, observe that by Lemma 1 and 6, λ exists, it is equal to ϕn and

λ̂− λ =

 ∑
i<j,j∈Bi\i

∆̃ijxi∆̃ijz
′
i

 ∑
i<j,j∈Bi\i

∆̃ijzi∆̃ijz
′
i

−1

p→0.

Then using the definition of Â =
∑

i<j,j∈Bi\i(∆̃ijti − λ̂∆̃ijzi)(∆̃ijti − λ̂∆̃ijzi)
′, we have

Â− ∆̃ijW
xx
n = (λ̂− λ)∆̃ijW

zz
n (λ̂− λ)′ − ∆̃ijW

xz
n (λ̂− λ)′ − (λ̂− λ)∆̃ijW

xz
n

p→0.

Thus, Lemma 1 and Assumption 5 imply that Â
p→A that is full rank. In the same way, we can show

that ÂNW
p→ANW.

Let us define

B̃
ecov
n =

1

Np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

∆̃ijxi∆̃ijεi∆̃klx
′
k∆̃klεl,

B̃
ehw
n =

1

Np

∑
i<j,j∈Bi\i

∆̃ijε
2
i ∆̃ijxi∆̃ijx

′
i,

B̄
ecov
n =

1

Np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

∆̃ijxi∆̃ij ε̂i∆̃klx
′
k∆̃klε̂l,

B̄
ehw
n =

1

Np

∑
i<j,j∈Bi\i

∆̃ij ε̂
2
i ∆̃ijxi∆̃ijx

′
i.

Becov
n =

1

np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k

E(∆ijxi∆ijεi∆klxk∆klεl),

and

Behw
n =

1

np

∑
i<j,j∈Bi\i

E(∆ijε
2
i∆ijxi∆ijx

′
i).

Let us define, B̂
ecov

= 1
Np

∑
i<j,j∈Bi\i

∑
k ̸=i<l,l∈Bk\k 1(k∈Bi|i∈Bk|k=j|i=l)∆̃ij ϵ̂i∆̃klϵ̂k∆̃ijx̂i∆̃klx̂

′
k, and

B̂
ehw

= 1
Np

∑
i<j,j∈Bi\i ∆̃ij ϵ̂

2
i ∆̃ijx̂i∆̃ijx̂

′
i and rewrite B̂ = (B̂

ehw
+B̂

ecov
). Observe that lim

n→∞
E(B̂) =

Behw + ρ2Becov. Subsequently, employing the same rationale as presented in the proof of Lemma 2 in
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Abadie et al. (2020) (page 293), we can demonstrate that B̂ − (Behw + ρ2Becov)
p→0 under the con-

ditions of Assumptions 5a) with δ = 4 and 8, where Becov = lim
n→∞

Becov
n . This derivation utilizes both

the moment convergences presented in in Lemma 1 a), the assertion that β̂ND
p→βND as established in

Proposition 1, and γ̂ND
p→γND (using again Lemma 1 a)). Using the same reasoning, we can show

that B̂NW − (Behw
NW +Behwneigh

NW + ρBecov
NW )

p→0, under the conditions of Assumptions 5a) with δ = 4

and 9. This derivation utilizes both the moment convergences presented in Lemma 1 b), the assertion

that β̂NW
p→βNW as established in Proposition 2, and γ̂NW

p→γNW (using again Lemma 1 b)).

Appendix A.3. Set cardinalities for irregular lattices

We report Lemma A.1 (ii) and (iii) in Jenish and Prucha (2009).

Lemma 8. Let D ⊂ Rd0 , d0 ≥ 1, be an infinitely countable unevenly spaced lattice. For any distance
d there are at most k1dd0 points in Bd

i and k2dd0−1 points in Bd
i /B

d−1
i , where k1 and k2 are positive

constants.

Appendix A.4. Homoskedastic case

When errors are homoskedastic, i.e. E(ϵϵ′|X,θ) = σ2In, then a consistent estimator of the asymp-

totic variance of the ND estimator is

V̂
hom
ND = σ̂2Â

−1B̂
hom

Â−1, (A.14)

with

B̂
hom

= X ′D′DD′DX,

(A.15)

and an unbiased estimator of σ2 (see also, e.g. Duranton et al., 2011) is

σ̂2 =
[
tr(DD′)− tr(ÂB̂)

]−1 ∑
i<j,j∈Bi\i

∆ij ϵ̂i∆ij ϵ̂i. (A.16)

Similarly, for the NW estimator we have

V̂
hom
NW = σ̂2Â

−1
W B̂

hom
W Â−1

W , (A.17)

where B̂
hom
W have the same formulation of B̂ with Gn in place of D, while an unbiased estimator of σ2

is

σ̂2 =
[
tr(GnG

′
n)
]−1

n∑
i=1

∆i,ni ϵ̂i∆i,ni ϵ̂i. (A.18)
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Appendix A.5. Sequential Hausman-like tests and error rate

This Appendix shows that the sequence of Hausman-like tests performed to find the optimal threshold

d∗ does not result in more frequent rejection of the true hypotheses. In doing so, we follow the approach

for testing hypotheses in order given by Rosenbaum (2008).19 Let D = 1, 2 . . . , κ be a totally ordered set

with order ⪯. In our framework, D represents the set of threshold distances. Let Hd, d ∈ D, be a class

of hypotheses, indexed by the threshold d. For each hypothesis, Hd, the researcher fixes a nominal size

α. If Hd is true then pr(pd ≤ α) ≤ α, where pd is the p-value for the Hausman-like test implemented

at the threshold distance d. The sequence of hypotheses Hd is indexed by all the distances that satisfy

the inequality d ≤ d∗. In this context, the distance threshold κ − 1 is preferred to κ, i.e. κ ⪯ κ − 1 if

κ− 1 ≤ κ. Further, we assume that there is some Hd∗ , that is true and for all d ≺ d∗, Hd is false.

Sequential Hausman-like Tests procedure. For each d ∈ D, test Hd at nominal size α if and only

if Hd1 , d1 ∈ D, has been previously tested (at nominal size α) and rejected for all d1 ≺ d (d1 < d);

otherwise do not test Hd.

The Sequential Hausman-like Tests procedure falls into the Method 1. proposed in Rosenbaum

(2008). The author shows that the probability of the researcher rejecting at least one true hypothesis

using Method 1. is at most α (Proposition 1). In other words, under these assumptions and the ordering

nature of the hypotheses, the sequentiality of this procedure does not affect the probability of type I error.

19Sales (2017) provides an alternative method for sequential specification tests using an illustrative example similar to ours: the
selection of bandwidth for a regression discontinuity design.
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